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Abstract 

One of the most important constants of mathematics is the Euler’s number 𝑒. Many world mathematicians have 

studied the properties of number 𝑒 and this number has an irreplaceable place not only in mathematics but also 

in other scientific disciplines. In the first part of the article we will focus on the introduction of the number 𝑒 from 

a historical view and we will show some of its important features. The irrationality of the number 𝑒 was first 

proven by Leonhard Euler in 1737. We present one of the possible proofs in the second part of this article. 
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1 Introduction 

The number 𝑒 is a very significant mathematical constant whose history is relatively "young". 
The first effort to simplify mathematical calculations was the introduction of numbers' 
logarithms, which in the 16-th century was dealt with independently by amateur 
mathematicians John Napier (1550 - 1617) and Joost Bürgi (1552 - 1632).  

John Napier was the first in 1614 to have published a table of logarithms of the values of 
goniometric functions of sine, cosine, and tangent, which were favourably evaluated by 
professional mathematicians. In 1615, the English mathematician Henry Briggs (1561 - 1630) 
replaced Napier's logarithm by the decimal logarithm that helped to the mass use of 
logarithms and also presented a certain approximation of the decimal logarithm of a number 
later referred to as 𝑒.  

The Dutch physicist, mathematician and astronomer Christiaan Huygens (1629-1695) made 
further progress in 1661, when he defined a "logarithmic" curve (in today's terminology, the 
exponential curve in the equation  𝑦 = 𝑘 ∙ 𝑎𝑥), with calculations coming to the computation 
of the constant created by the decimal logarithm of the "today's" number 𝑒 to 17 decimal 
places.  

The "today's" number 𝑒 was first discovered and defined by using the limits by addressing the 
compound interest issue in 1683 by the Swiss mathematician Jacob Bernoulli (1654 - 1705), 

who first evaluated the limit of the sequence {(1 +
1

𝑛
)
𝑛

}
𝑛=1

∞

.  

In 1690, the "today's" number was 𝑒 named and marked 𝑏 by the German philosopher and 
mathematician, Gottfried Wilhelm Leibniz. Leonhard Euler (1707 - 1783) was the first 
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mathematician to use the label around 1727 “𝑒” for the number 𝑒 and for the first time it was 
published in 1736 in his work Mechanica. Leonhard Euler examined and revealed different 
features of the number 𝑒 [1] and came to an approximation of the number 𝑒 to 18 decimal 
places 𝑒 = 2,718281828459045235. Euler was the first to prove that the number 𝑒 is 
irrational. In the next few years, many mathematicians tried to express the number 𝑒 to as 
many decimal places as possible and to find its different properties. At present, the number 𝑒 
is expressed in millions of decimal places [2]. 

The number 𝑒 is called 

𝑒 = lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

= 2,718281828459045235360287471352… 

 
The number 𝑒 has some characteristic properties among all positive real numbers. First, we 

show that the number 𝑒 is the only positive real number that meets the inequality (with the 
unknown 𝑎): 

𝑎𝑥 ≥ 1 + 𝑥 
for each 𝑥 ∈ ℝ. To show this relationship we will need a lemma.  

Lemma. Let be 𝑑, 𝑥 ∈ ℝ, 𝑑 > −1, 𝑥 ≥ 1. Then, it holds that 

(1 + 𝑑)𝑥 ≥ 1+ 𝑥𝑑. 
The proof can be found in  [3]. 
 
1. Let the number 𝑎 > 0 have that property, that 𝑎𝑥 ≥ 1 + 𝑥 it applies to every 𝑥 ∈ ℝ. We 

can show that 𝑎 = 𝑒. Let be 𝑥 =
1

𝑛
    for = 1,2,⋯ . Then 

 

𝑎
1

𝑛 ≥ 1 +
1

𝑛
 

From this 

𝑎 ≥ (1 +
1

𝑛
)
𝑛

= 𝑠𝑛,       𝑛 = 1,2,⋯ 

 

If we put  𝑥 = −
1

𝑛+1
 , 𝑛 = 1,2,⋯ , 𝑡hen 

𝑎−
1

𝑛+1 ≥ 1 −
1

𝑛 + 1
=

1

1 +
1

𝑛

 

1

𝑎
1

𝑛+1

≥
1

1 +
1

𝑛

⇒ 1+
1

𝑛
≥ 𝑎

1

𝑛+1 

From that 

𝑎 ≤ (1 +
1

𝑛
)
𝑛+1

= 𝑡𝑛, 𝑛 = 1,2,⋯ 

 

Then from the inequalities 𝑎 ≥ (1 +
1

𝑛
)
𝑛

, 𝑎 ≤ (1 +
1

𝑛
)
𝑛+1

 we have 

 

(1 +
1

𝑛
)
𝑛

≤ 𝑎 ≤ (1 +
1

𝑛
)
𝑛+1

. 

By 𝑛 → ∞ 

lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

≤ lim
𝑛→∞

𝑎 ≤ lim
𝑛→∞

(1 +
1

𝑛
)
𝑛+1

. 
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Since 

lim
𝑛→∞

(1 +
1

𝑛
)
𝑛

= 𝑒 = lim
𝑛→∞

(1 +
1

𝑛
)
𝑛+1

, 

 
based on the fundamental properties of the limits [4] we get 𝑎 = 𝑒. 
  
2. We show that the number 𝑒 has the property that for each 𝑥 ∈ ℝ it holds 
 

𝑒 ≥ 1 + 𝑥 
 
For 𝑥 = 0, the relationship is valid. Let be 𝑥 > 0 and let us determine a natural number 𝑛 so 

that it holds 𝑛 ≥
1

𝑥
. Then 𝑛𝑥 ≥ 1 and based on the relationship (1 + 𝑑)𝑥 ≥ 1 + 𝑥𝑑 for 𝑑 =

1

𝑛
 

and the inequalities (1 +
1

𝑛
)
𝑛

≤ 𝑒 ≤ (1 +
1

𝑛
)
𝑛+1

 𝑛 = 1,2,⋯, we obtain: 

 

𝑒𝑥 ≥ (1 +
1

𝑛
)
𝑛𝑥

≥ 1 + 𝑛𝑥
1

𝑛
= 1 + 𝑥 

 

Let be 𝑥 < 0. Then −
1

𝑥
> 0. Let us determine a natural number 𝑛 > 1 so that it holds 𝑛 ≥ −

1

𝑥
. 

Then we have  −𝑛𝑥 ≥ 1 and, again on the basis of the relationship (1 + 𝑑)𝑥 ≥ 1 + 𝑥𝑑 for =

−
1

𝑛
 , we derive that 

(1 −
1

𝑛
)
−𝑛𝑥

≥ 1 + 𝑥. 

For 𝑛 > 1, it holds 
 

(1 −
1

𝑛
)
−𝑛

= (
𝑛−1

𝑛
)
−𝑛

= (
𝑛

𝑛−1
)
𝑛

= (
1+(𝑛−1)

𝑛−1
)
𝑛

= (1 +
1

𝑛−1
)
𝑛

≥ 𝑒. 

 

As 𝑥 < 0, by powering the inequality (1 −
1

𝑛
)
−𝑛

≥ 𝑒 to – 𝑥, we receive 

 

𝑒−𝑥 ≤ (1 −
1

𝑛
)
𝑛𝑥

. 

Furthermore, by powering to the value  – 1 we get the following 
 

𝑒𝑥 ≥ (1 −
1

𝑛
)
−𝑛𝑥

≥ 1+ 𝑥, 

what completes the proof. 
 
For the number 𝑒 it holds 

𝑒𝑥 = lim
𝑛→∞

(1 +
𝑥

𝑛
)
𝑛

, 𝑥 ∈ ℝ. 

 

Let be 𝑥 ∈ ℝ. Let be chosen  𝑛0 ∈ ℕ so that for each 𝑛 > 𝑛0 the inequality |
𝑥

𝑛
| < 1 holds.  

In accordance with the preceding, the inequality 𝑒𝑡 ≥ 1 + 𝑡 holds for any 𝑡 ∈ ℝ. Let's pose 

𝑡 =
𝑥

𝑛
, 𝑛 > 𝑛0. Then 

𝑒
𝑥

𝑛 ≥ 1 +
𝑥

𝑛
> 0. 

By powering to 𝑛, we receive 
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𝑒𝑥 ≥ (1 +
𝑥

𝑛
)
𝑛

. 

 

Let be 𝑛 a natural number greater than – 𝑥. Then, by substituting for 𝑡 = −
𝑥

𝑛+𝑥
 (for  𝑛 > 𝑛0 

and 𝑛 > −𝑥) into the inequality 𝑒𝑡 ≥ 1 + 𝑡, we get 
 

𝑒−
𝑥

𝑛+𝑥 ≥ 1 −
𝑥

𝑛+𝑥
. 

Next, let's edit the right side 

1 −
𝑥

𝑛+𝑥
=

𝑛+𝑥

𝑛+𝑥
−

𝑥

𝑛+𝑥
=

𝑛

𝑛+𝑥
=

1

1+
𝑥

𝑛

> 0. 

Hence 

𝑒−
𝑥

𝑛+𝑥 ≥
1

1+
𝑥

𝑛

. 

 
Let us power both sides of the inequality to 𝑛. Then 
 

𝑒−
𝑛𝑥

𝑛+𝑥 ≥
1

(1 +
𝑥

𝑛
)
𝑛 

and from that 
1

𝑒
𝑛𝑥
𝑛+𝑥

≥
1

(1+
𝑥

𝑛
)
𝑛 ⇒ 𝑒

𝑛𝑥

𝑛+𝑥 ≤ (1 +
𝑥

𝑛
)
𝑛

≤ 𝑒𝑥. 

By 𝑛 → ∞ 

lim
𝑛→∞

𝑒
𝑛𝑥

𝑛+𝑥 ≤ lim
𝑛→∞

(1 +
𝑥

𝑛
)
𝑛

≤ lim
𝑛→∞

𝑒𝑥. 

 
If 𝑛 → ∞, then given the continuity of the function 𝑔:ℝ → ℝ 𝑔(𝑡) = 𝑒𝑡, we get 

lim
𝑛→∞

𝑒
𝑛𝑥

𝑛+𝑥 = 𝑒𝑥 

and  based on the fudamental characteristics of the limits [4], it holds  

lim
𝑛→∞

(1 +
𝑥

𝑛
)
𝑛

= 𝑒𝑥. 

2 Number 𝒆 is irrational 

Finally, we will show that the number 𝑒 is irrational [3].  

Let us consider the sequence {𝑎𝑛}𝑛=1
∞ , where 𝑎𝑛 = 1+

1

1!
+⋯+

1

𝑛!
, 𝑛 = 1,2,⋯. This sequence 

is an increasing one. Then, for each 𝑛 > 2, it holds  
𝑛! = 1 ∙ 2 ∙ 3 ∙ ⋯ ∙ 𝑛 > 2 ∙ 2 ∙ ⋯ ∙ 2⏟      

(𝑛−1) 𝑡𝑖𝑚𝑒𝑠

= 2𝑛−1. 

 

Hence, 
1

𝑛!
<

1

2𝑛−1
. That's implies that  𝑎𝑛 < 2 +

1

2
+

1

22
+⋯+

1

2𝑛−1
< 3 for any natural number 

𝑛 > 2. The sequence {𝑎𝑛}𝑛=1
∞  is therefore also bounded from above. Then lim

𝑛→∞
𝑎𝑛 exists and 

is equal to sup𝑛∈ℕ𝑎𝑛.  
 

Now, we will indirectly show that the limit of this sequence is not a rational number.  
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Let suppose that lim
𝑛→∞

𝑎𝑛 =
𝑎

𝑏
∈ ℚ exists and should be 𝑏 > 3 (

𝑎

𝑏
 does not need to be in a 

canonical form). For any 𝑛 ∈ ℕ holds that  
𝑎

𝑏
> 1 +

1

1!
+⋯+

1

𝑛!
  and so for 𝜀 > 0 due to the 

definition of the sequence limit, it holds that for all 𝑛 from a certain starting point that 

|𝑎𝑛 −
𝑎

𝑏
| =

𝑎

𝑏
− 𝑎𝑛 < 𝜀 holds.  

Especially, the 𝜀 =
1

2(𝑏!)
 holds for 0 <

𝑎

𝑏
− 𝑎𝑛 <

1

2(𝑏!)
 big enough 𝑛 (hence, we can already 

assume that 𝑏 < 𝑛). Then 

0 <
𝑎

𝑏
− (1 +

1

1!
+⋯+

1

𝑛!
) =

𝑎

𝑏
− (1 +

1

1!
+ ⋯+

1

𝑏!
) − 

− (
1

(𝑏+1)!
+

1

(𝑏+2)!
+⋯+

1

𝑛!
) <

1

2(𝑏!)
. 

 
We multiply it by a number 𝑏! and  we get 
 

𝑏! [
𝑎

𝑏
− (1 +

1

1!
+⋯+

1

𝑏!
)]-[

𝑏!

(𝑏+1)!
+

𝑏!

(𝑏+2)!
+⋯+

𝑏!

𝑛!
] <

1

2
. 

 

Let's mark 𝑐 = 𝑏! [
𝑎

𝑏
− (1 +

1

1!
+⋯+

1

𝑏!
)] ≥ 1. For the second element it holds 

 
𝑏!

(𝑏+1)!
+

𝑏!

(𝑏+2)!
+⋯+

𝑏!

𝑛!
=  

=
1

𝑏+1
+

1

(𝑏+1)(𝑏+2)
+⋯+

1

(𝑏+1)⋯𝑛
=  

=
1

𝑏+1
[1 +

1

𝑏+2
+⋯+

1

(𝑏+2)⋯𝑛
] <

1

𝑏+1
[1 +

1

2
+⋯+

1

2𝑛−𝑏−1
] <

2

𝑏+1
. 

 

On the basis of this estimate, we are getting  1 ≤ 𝑐 <
1

2
+

2

𝑏+1
.  

 
As 𝑏 > 3, it holds that 1 ≤ 𝑐 < 1, which is a contradiction and the number to which the 
sequence {𝑎𝑛}𝑛=1

∞  converges is not rational. 
 

We can prove now that  lim
𝑛→∞

(1 +
1

1!
+

1

2!
+⋯+

1

𝑛!
) = 𝑒.  

 

Let be 𝑎𝑛 = (1 +
1

𝑛
)
𝑛

, 𝑏𝑛 = 1+
1

1!
+

1

2!
+⋯+

1

𝑛!
, 𝑛 ∈ ℕ. We will show that lim

𝑛→∞
𝑏𝑛 = 𝑒.  

 

We already know that   (1 +
1

𝑛
)
𝑛

< +
1

1!
+

1

2!
+⋯+

1

𝑛!
.  

 
We can show that 𝑏𝑛 ≤ 𝑒 for any 𝑛 ∈ ℕ. Let 𝑘 is any natural number, however, fixed in the 
next consideration. Then for any 𝑛 ∈ ℕ, 𝑘 < 𝑛, it holds 
 

𝑐𝑛 = 2+
1

2!
(1 −

1

𝑛
) +⋯+

1

𝑘!
(1 −

1

𝑛
) ∙ ⋯ ∙ (1 −

𝑘−1

𝑛
) <  

< 2 +
1

2!
(1 −

1

𝑛
) +⋯+

1

𝑘!
(1 −

1

𝑛
) ∙ ⋯ ∙ (1 −

𝑘−1

𝑛
) +⋯+

1

𝑛!
(1 −

1

𝑛
) ∙ ⋯ ∙ 

∙ ⋯ ∙ (1 −
𝑛−1

𝑛
) = (1 +

1

𝑛
)
𝑛

< 𝑒. 

 
We complete the definition of 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑘 = 1. Then 
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lim𝑛→∞𝑐𝑛 = 2 + lim𝑛→∞
1

2!
(1 −

1

𝑛
) + ⋯+ lim𝑛→∞

1

𝑘!
(1 −

1

𝑛
) ∙ ⋯ ∙  

∙ ⋯ ∙ (1 −
𝑘−1

𝑛
) = 2 +

1

2!
+⋯+

1

𝑘!
≤ 𝑒. 

 
For each natural number 𝑛, it holds 𝑎𝑛 < 𝑏𝑛 ≤ 𝑒. Then for 𝑛 → ∞ we get 
 

𝑒 = lim𝑛→∞𝑎𝑛 ≤ lim𝑛→∞𝑏𝑛 ≤ 𝑒. 

Hence, lim
𝑛→∞

(1 +
1

1!
+⋯+

1

𝑛!
) = 𝑒    and it menas that the number  𝑒 is irrational. 

Conclusion 

In the paper we showed the proof that the number 𝑒 is irrational and introduced some 
important historical remarks on number 𝑒. It can be also shown that the number 𝑒 is not 
algebraic but transcendent [3][5].  

The number 𝑒 has a wide range of applications, whether in differential and integral calculus, 
in physical or economic applications. The number 𝑒 also has many other interesting 
properties. For example it can also be expressed in the form of a non-terminating continued 
fraction [6] 

𝑒 = [2, 𝑎1, 𝑎2, ⋯ , 𝑎𝑘 ,⋯ ], 
 
where 𝑎3𝑚 = 𝑎3𝑚−2 = 1, 𝑎3𝑚−1 = 2𝑚, 𝑚 = 1,2,⋯. Hence 
 

𝑒 = [2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,⋯ ] = 

= 2 +
1

1 +
1

2+
1

1+
1

1+
1

4+⋯

 

 
and then the irrationality of number 𝑒 follows from the shape of its development into the 
continued fraction. 
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