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Abstract 

The task of solving non-linear equation occurs in practically all engineering disciplines. In the case of one 

equation, it is always possible to approximate the root within the required accuracy and to use some convergent 

method. The article deals with three basic convergent methods for roots approximation, namely bisection, 

tangent method and chord method, which are implemented and tested on several tasks in solving non-linear 

equations in Matlab computational environment as a suitable tool for implementation of various numerical 

methods. 
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1 Introduction 

In numerical mathematics we often seek algorithmically approximate solution of analytically 
insoluble problems or problems for which the analytical solution is very lengthy. Root 
approximation is a problem that occurs very often in the natural sciences or engineering 
practice to solve various tasks. For approximation of roots, thus solving equations in the form 
𝑓(𝑥) = 0, there are several known numerical methods that are based on recursive formulas. 
Recurrence-based computation methods, where each member of a sequence is defined as a 
function of a previous formulas, are found at the beginning of mathematics by Babylonians or 
Greeks. The Babylonians used them to calculate the square root of positive numbers and the 
Greeks to approximate the number 𝜋 [1]. 

A suitable computational environment for the implementation of various algorithms of 
numerical mathematics is the Matlab programming environment (a term which was created 
as an abbreviation from the Matrix Laboratory) [2]. Matlab is a suitable and powerful language 
to work with any calculation in teaching, industry or research with extensive possibilities in 
the creation and use of various structures. The Matlab computational environment enables to 
perform various mathematical calculations, implement various algorithms, measure, analyse 
and statistically process various data, model and simulate different and even infeasible events, 
design various systems with user interface, create graphs and so on. Matlab is an object-
oriented environment and directly utilizes the features of the operating system (e.g. when 
working with files), which simplifies the design phase as much as possible, so we can spend 
more time on the algorithm itself when implementing various numerical algorithms. Matlab 
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consists of a computational unit that performs various numeric operations with real or 
complex number matrices, a programming language used to write algorithms using language 
commands, a working environment that includes various command processing tools or data 
import and export, graphic system that allows you to create user environments, work with 
images or animations, libraries of mathematical functions, and various embedded algorithms 
such as global optimum search algorithms, API interface for implementing C or Fortran scripts, 
Toolboxes with various optional libraries of specialized functions (e.g. for fuzzy logic, neural 
networks, statistics), and an open architecture for implementing various systems. A very 
effective and standalone extension of the Matlab system is the graphical interactive Simulink 
program, which allows you to simulate and model various dynamic systems using graphics 
schemes using Matlab functions and commands.  

2 Numerical methods for finding roots 

In the Matlab computational environment, the roots of a polynomial function can be searched 
for directly by the built-in roots function, where the coefficients of the polynomial are 
determined by the vector. Consider, for example, function 𝑓(𝑥) = −𝑥4 + 3𝑥2 + 2𝑥 and find 
its roots. First, a coefficient vector must be created (which must also include zero coefficients 
in order not to reduce the degree of the polynomial).  

>> c = [-1 0 3 2 0]; 

>> roots(c) 

 

ans =  

         0 

    2.0000 

   -1.0000 

   -1.0000 

 
Given function and its roots can be viewed in the chart (Figure 1). 
 
x = -2.5:0.005:2.5; 

y = -x.^4 + 3*x.^2 + 2*x; 

h = plot(x, y); 

set(h, 'LineWidth', 3); 

grid on 

 

Figure 1: Function Graph 𝑓(𝑥) = −𝑥4 + 3𝑥2 + 2𝑥. 
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For any function (not only in the case of a polynomial), if an algebraic equation 𝑓(𝑥) = 0 is 
given with real coefficients having within an interval  (𝑎, 𝑏)  exactly one real root 𝑘, we can 

approximate it with the ab ante desired accuracy 𝜀 using the fzero function, also built-in 
directly in Matlab. The fzero function can be called with either a two-element vector 
representing the interval (𝑎, 𝑏) or only with a starting point 𝑥0 from which the search is to be 
started. In this case, the fzero function first finds such an interval around the starting point 
at which the function 𝑓(𝑥) changes its sign. If it does not find such an interval, it returns NaN. 

However, if we know the appropriate interval (𝑎, 𝑏) beforehand, it is guaranteed that fzero 
function successfully returns a value close to the root of the equation. Now consider the 
function 𝑓(𝑥) = 𝑥3 − 7𝑥 + 1 on the interval (0,1) (Figure 2) and find the solution to the 
equation 𝑓(𝑥) = 0. 

>> f = inline('x^3 - 7*x + 1'); 

>> k = fzero(f, [0 1]) 

k = 0.1433 

If you need to see the exact steps of the fzero function, you can set their display using the 
Display parameter of the options [3] structure. The accuracy 𝜀 is also possible to be set 

with optimset function. 

>> setdsp = optimset('Display', 'iter'); 

>> k = fzero(f, [0 1], setdsp) 

 Func-count    x          f(x)             Procedure 

    2               0             1        initial 

    3        0.166667     -0.162037        interpolation 

    4        0.143426   -0.00103363        interpolation 

    5        0.143277  5.13222e-007        interpolation 

    6        0.143277 -4.73821e-012        interpolation 

    7        0.143277 -2.22045e-016        interpolation 

    8        0.143277 -2.22045e-016        interpolation 

Zero found in the interval [0, 1] 

k = 0.1433 

 

Figure 2: Function Graph 𝑓(𝑥) = 𝑥3 − 7𝑥 + 1. 

We can also solve non-linear equations numerically using the method of half division of the 
interval (so-called bisection) [4]. Let the interval 〈𝑎, 𝑏〉 be one of the intervals containing the 
root of the equation 𝑓(𝑥) = 0. We will find a solution in this interval if 𝑓(𝑎) ∙ 𝑓(𝑏) < 0.  Let's 
define a sequence of intervals 〈𝑎𝑛, 𝑏𝑛〉 with the following properties (Figure 3): 

1. 〈𝑎1, 𝑏1〉 = 〈𝑎, 𝑏〉 
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2. Next, we take the middle of the interval 𝑐1 =
𝑎1+𝑏1

2
 and if this point is the solution to 

that equation, we will terminate the process, otherwise 𝑓(𝑐1) ≠ 0. Then either 
𝑓(𝑎1) ∙ 𝑓(𝑐1) < 0 and then 〈𝑎2, 𝑏2〉 = 〈𝑎1, 𝑐1〉, or 𝑓(𝑏1) ∙ 𝑓(𝑐1) < 0 and then 
〈𝑎2, 𝑏2〉 = 〈𝑐1, 𝑏1〉. 

3. Suppose we defined such an interval 〈𝑎𝑛, 𝑏𝑛〉 that 𝑓(𝑎𝑛) ∙ 𝑓(𝑏𝑛) < 0. We take the 

middle of the interval  𝑐𝑛 =
𝑎𝑛+𝑏𝑛

2
 again. If this point is the solution of the given 

equation we will terminate the process, otherwise 𝑓(𝑐𝑛) ≠ 0. Then either 𝑓(𝑎𝑛) ∙
𝑓(𝑐𝑛) < 0 and then 〈𝑎𝑛+1, 𝑏𝑛+1〉 = 〈𝑎𝑛, 𝑐𝑛〉, or 𝑓(𝑏𝑛) ∙ 𝑓(𝑐𝑛) < 0 and then 
〈𝑎𝑛+1, 𝑏𝑛+1〉 = 〈𝑐𝑛, 𝑏𝑛〉. 

 

 

Figure 3: Method of bisection. 

If the sequence {𝑐𝑛} has a finite number of members, then the last is the root of the equation 
𝑓(𝑥) = 0. If it is infinite, then it has a finite limit, which is the exact solution to our equation. 
At each step, the length of the interval was reduced by half, and thus for an approximate 

solution 𝑐𝑛 the estimate |𝑐𝑛 − 𝑘| <
𝑏−𝑎

2𝑛  applies, where 𝑘 is the exact solution. To determine 

the approximate solution with accuracy 𝜀 > 0, then we terminate the process of dividing the 

interval when |𝑏𝑛 − 𝑎𝑛| < 2𝜀 and we will accept an approximate solution 𝑐𝑛 =
𝑎𝑛+𝑏𝑛

2
. From 

the inequality |𝑐𝑛 − 𝑘| <
𝑏−𝑎

2𝑛  (if its right side is less than 𝜀) we get 𝑛 >
1

ln 2
ln (

𝑏−𝑎

𝜀
), which 

represents the number of iterations needed for accuracy 𝜀. If the conditions are satisfied that 
the function is continuous and assumes different characters at the ends of a given interval, 
then this method is always convergent. The following function (such as the m-file 
bisection.m) presents the method of bisection in the Matlab environment. 
 
function [f_root, term_type] = bisection(funct, tol, maxiter, 

a, b) 

iterations = 0; 

term_type = 0; 

f_root = NaN; 

f_a = feval(funct, a); 

f_b = feval(funct, b); 

  

while (f_a * f_b<0) && (iterations<maxiter) && ((b - a)>tol) 

  c = (b + a) / 2; 

  f_c = feval(funct, c); 

  if (f_c * f_a) < 0 
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    b = c; 

    f_b = f_c; 

  else 

    a = c; 

    f_a = f_c; 

  end 

  iterations = iterations + 1; 

end 

 if (iterations == maxiter) 

  term_type = 1; 

else 

  f_root = c; 

  term_type = iterations; 

end 

 end 

 
Now we can find the root of the equation using the created function  𝑓(𝑥) = 𝑥 − 2 𝑠𝑖𝑛 𝑥2 on 
the interval 〈0.5,1〉. We create the function 𝑓(𝑥) as a separate m-file to call as a real parameter 

of the formal funct parameter in the bisection function. 
 
function y = f(x) 

y = x - 2*sin(x.^2); 

 
To call the bisection function, run the script (bisect.m file) specified below for accuracy 
𝜀 = 10−4 and a maximum of 50 iterations allowed. 
[f_root, term_type] = bisection('f', 1e-4, 50, 0.5, 1); 

 if (term_type == 0) 

  disp('The interval does not contain the root or contains 

more roots!') 

elseif (term_type == 1) 

  disp('The root could not be found within the specified 

number of iterations!') 

else 

  disp(['Root = ' num2str(f_root) ' found in ' 

num2str(term_type) ' iterations.']) 

end 

We get the result (Figure 4): 
>> bisect 

Root = 0.50543 found in 13 iterations. 
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Figure 4: Function Graph 𝑓(𝑥) = 𝑥 − 2 𝑠𝑖𝑛 𝑥2. 

Another option for finding the roots of a given function is to use the chord method (the so-

called false-proposition method) [5]. Assume 𝑓(𝑎) ∙ 𝑓(𝑏) < 0. The chord method consists in 

replacing the function 𝑓(𝑥) in the interval (𝑎, 𝑏) by a chord given by points 𝐴(𝑎, 𝑓(𝑎)), 

𝐵(𝑏, 𝑓(𝑏)), whose equation is 𝑦 − 𝑓(𝑎) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑎) (Figure 5). 

 

Figure 5: Method of chords. 

 

Lay 𝑦 = 0 and calculate the intersection point 𝑥1 = 𝑎 −
𝑏−𝑎

𝑓(𝑏)−𝑓(𝑎)
𝑓(𝑎) with 𝑥 axis. If the sign 

of  𝑓(𝑥1) equals the sign of 𝑓(𝑎), we lay 𝑥1 = 𝑎1. Proceed in this way and get approximations 

𝑎2 = 𝑎1 −
𝑏−𝑎1

𝑓(𝑏)−𝑓(𝑎1)
𝑓(𝑎1) , 𝑎3, 𝑎4, ... that converge to the root 𝑘. If the sign of 𝑓(𝑥1) equals 

the sign of 𝑓(𝑏), we lay 𝑥1 = 𝑏1, then 𝑏1 = 𝑎 −
𝑏−𝑎

𝑓(𝑏)−𝑓(𝑎)
𝑓(𝑎) as well as in the next process 

we get approximations 𝑏2 = 𝑎 −
𝑏1−𝑎

𝑓(𝑏1)−𝑓(𝑎)
𝑓(𝑎) , 𝑏3 , 𝑏4 , … converging to the root. The chord 

method algorithm as a function written in Matlab then looks like [6]: 
 
function f_root = false_proposition(f, tol, a, b) 

  

fa = feval(f, a); 

fb = feval(f, b); 

 while (abs(fa) > tol) && (abs(fb) > tol) 

  x1 = a - (b - a) / (fb - fa) * fa; 

  fx1 = feval(f, x1); 

  if (fx1 * fa) > 0 

    a = x1; 

  else 

    b = x1; 

  end 

  fa = feval(f, a); 

  fb = feval(f, b); 

end 

 f_root = x1; 

 end 
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Now we find the root of the equation  𝑥3 − 5𝑥2 − 16𝑥 + 53 = 0 in the interval 〈2,3〉 by the 
chord method with precision of 𝜀 = 10−4. 
>> format long 

>> f = inline('x^3 - 5*x^2 - 16*x + 53'); 

>> f_root = false_proposition(f, 1.e-4, 2, 3) 

 

f_root = 2.38347756851597 

 
The tangent method (the Newton method) belongs among the important methods of roots 
approximation. The development of mechanics in the 17th century played its role in solving 
the problem of tangents, seeking their analytical expression and constructions. The 
correlation of physical factors of movement with the curve geometry of the moving point 
curve has crystallized into the concept that the direction of movement at each point of the 
trajectory is determined by the tangent to the curve at that point. The first concepts of 
tangents date back to antiquity [7], according to which the tangent line had one point in 
common with the curve. In modern differential geometry for higher-grade algebraic curves 
and transcendental curves, the original static concept of tangent has been replaced by the 
dynamic understanding of the tangent as the limit position of the secant with "infinitely close" 
intersections with the curve. In such a view of the tangent, various physical factors stemming 
from Galileo's theory of motion could have entered into the tangent theory. Isaac Newton 
(1642 - 1727), a mathematician and physicist, proved the solution to the tangent problem 
from the perspective of infinitesimal calculus by his methods and he described his methods of 
finding approximate algebraic solutions in 1699 in his work De analysi per aequationes numero 
terminorum infinitas, published 12 years later by British mathematician William Jones. In 
1740, based on this work, British mathematician Thomas Simpson introduced a new iterative 
method for solving general non-linear equations. 

Suppose a given function 𝑦 = 𝑓(𝑥) has a derivative. We choose the initial root approximation 
𝑥0. We run the tangent to the graph of function f  through the point [𝑥0, 𝑓(𝑥0)]. Mark 𝑥1 its 
intersection with the 𝑥 axis. Then we lead the tangent through the point [𝑥1, 𝑓(𝑥1)]. Mark 𝑥2 
its intersection with the 𝑥 axis. This proceeds further (Figure 6) [8]. 

 

Figure 6: Newton method. 

 
Suppose we know 𝑥𝑘 and we want to calculate a closer approximation 𝑥𝑘+1. We run the 

tangent through the point [𝑥𝑘, 𝑓(𝑥𝑘)] to the curve 𝑦 = 𝑓(𝑥). Substitute to the tangent 

equation 
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𝑦 = 𝑓(𝑥𝑘) + 𝑓′(𝑥𝑘)(𝑥 − 𝑥𝑘) 

by 𝑦 = 0 to obtain the intersection of the tangent line with the 𝑥 axis: 

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
 

We will now deduce the error of this method. Let 𝑒𝑘 = 𝑥𝑘 − 𝑥∗ is an error in the 𝑘-th step. 

Let us make Taylor expansion [9] 𝑓(𝑥∗) around 𝑥𝑘.  Now suppose that the second derivative 

also exists. It is valid from the definition of Taylor expansion that its sum around the point 

equals the functional value at this point, so 

0 = 𝑓(𝑥∗) = 𝑓(𝑥𝑘) + (𝑥∗ − 𝑥𝑘)𝑓′(𝑥𝑘) +
1

2
(𝑥∗ − 𝑥𝑘)2𝑓′′(𝜑), 

where 𝜑 is a point of the interval whose limit values are 𝑥𝑘 and 𝑥∗. 

After simplification we get 

−
1

2
(𝑥∗ − 𝑥𝑘)2

𝑓′′(𝜑)

𝑓′(𝑥𝑘)
=

𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
+ (𝑥∗ − 𝑥𝑘) 

−
1

2
(𝑥∗ − 𝑥𝑘)2

𝑓′′(𝜑)

𝑓′(𝑥𝑘)
= 𝑥∗ − [𝑥𝑘 −

𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
] = 𝑥∗ − 𝑥𝑘+1 

1

2
𝑒𝑘

2
𝑓′′(𝜑)

𝑓′(𝑥𝑘)
= 𝑒𝑘+1 

Then 

lim
𝑘→∞

|𝑒𝑘+1|

|𝑒𝑘|2
=

|𝑓′′(𝜑)|

|𝑓′(𝑥𝑘)|
 

And we see that the Newton method converges quadratically. We can now find the root of 
the equation 𝑓(𝑥) = 𝑥 − 2 𝑠𝑖𝑛 𝑥2 using the Newton method. For this purpose we created 3 
functions in Matlab. The first represents the given function, the second represents its 
derivative: 
function y = f(x) 

y = x - 2*sin(x.^2); 

function y = f2(x) 

y = 1 - 4*x.*cos(x.^2); 

The third function is the algorithm of the Newton method itself. 
function [f_root, term_type] = newton(tol, x, maxiter) 

 iterations = 0; 

 while (iterations < maxiter) && (abs(f(x)) > tol) 

  x = x - f(x) / f2(x); 

  iterations = iterations + 1; 

end 

if (iterations == maxiter) 

  term_type = 1; 

else 

  f_root = x; 

  term_type = iterations; 

end 

 end 
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We call the newton function by running the script ( newton2.m ) lower with precision 𝜀 =
10−4 and a maximum of 50 iterations allowed. 
[f_root, term_type] = newton(1e-4, 1, 50); 

  

if (term_type == 1) 

  disp('Root not found!') 

else 

  disp(['Root = ' num2str(f_root) ' found in ' 

num2str(term_type) ' iterations.']) 

end 

We get the result: 
>> newton2 

Root = 0.50548 found in 4 iterations. 

 
We can see that compared to the bisection method, we have obtained a root approximation 
with a significantly lower number of iterations due to quadratic convergence. The Newton 
method can also diverge. However, the method always converges, provided that the initial 
approximation is sufficiently close to the root. By appropriate combining the bisection method 
with the Newton method, it is possible to construct a combined method that always 
converges. 

Conclusion 

Mathematics provides a variety of analytical or algebraic tools to solve practical problems 
from different industries. However, many practical tasks result from the compilation of such 
equations or functions that are analytically insolvable or very difficult to solve. Thanks to 
numerical mathematics and computers, we can now construct algorithms for virtually every 
problem. These algorithms are able to find approximate (or even accurate) solutions within 
the accuracy we require, and our analytical task remains to determine the error estimate of 
the inaccurate solution. Root approximation means expressing the problem of solving the 
equation in a form useful in the field of iterative processes, which is also the bisection method, 
the chord method or the Newton method, obtaining a root value that is as accurate as possible 
to the true value. The roots approximation in the Matlab computational environment in terms 
of computations includes convergent methods, by means of which we can find solutions of 
non-linear equations with any degree of accuracy and thus Matlab proves to be a very suitable 
tool for implementing algorithms of various numerical methods. 
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