

Acta Mathematica Nitriensia

Vol. 5, No. 2, p. 1 – 10

ISSN 2453-6083

Root Approximation in Matlab Computational Environment

Viliam Ďuriš 1a – Peter Korman 2b
a*Department of Mathematics Faculty of Natural Sciences Constantine the Philosopher University in Nitra,

Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
bLear Corporation Slovakia s.r.o., Priemyselný park Nitra, Dolné Hony 1, 949 01, Nitra

Received September 14, 2019; received in revised form September 23, 2019; accepted September 28, 2019

Abstract

The task of solving non-linear equation occurs in practically all engineering disciplines. In the case of one

equation, it is always possible to approximate the root within the required accuracy and to use some convergent

method. The article deals with three basic convergent methods for roots approximation, namely bisection,

tangent method and chord method, which are implemented and tested on several tasks in solving non-linear

equations in Matlab computational environment as a suitable tool for implementation of various numerical

methods.

Keywords: root approximation, bisection, Newton's method, false-proposition, Matlab

Classification: 49M15, 65H04

1 Introduction

In numerical mathematics we often seek algorithmically approximate solution of analytically
insoluble problems or problems for which the analytical solution is very lengthy. Root
approximation is a problem that occurs very often in the natural sciences or engineering
practice to solve various tasks. For approximation of roots, thus solving equations in the form
𝑓(𝑥) = 0, there are several known numerical methods that are based on recursive formulas.
Recurrence-based computation methods, where each member of a sequence is defined as a
function of a previous formulas, are found at the beginning of mathematics by Babylonians or
Greeks. The Babylonians used them to calculate the square root of positive numbers and the
Greeks to approximate the number 𝜋 [1].

A suitable computational environment for the implementation of various algorithms of
numerical mathematics is the Matlab programming environment (a term which was created
as an abbreviation from the Matrix Laboratory) [2]. Matlab is a suitable and powerful language
to work with any calculation in teaching, industry or research with extensive possibilities in
the creation and use of various structures. The Matlab computational environment enables to
perform various mathematical calculations, implement various algorithms, measure, analyse
and statistically process various data, model and simulate different and even infeasible events,
design various systems with user interface, create graphs and so on. Matlab is an object-
oriented environment and directly utilizes the features of the operating system (e.g. when
working with files), which simplifies the design phase as much as possible, so we can spend
more time on the algorithm itself when implementing various numerical algorithms. Matlab

*Corresponding author; email: vduris@ukf.sk
DOI: 10.17846/AMN.2019.5.2.1-10

mailto:vduris@ukf.sk

2 Acta Mathematica Nitriensia, Vol. 5, No. 2, p. 1-10

consists of a computational unit that performs various numeric operations with real or
complex number matrices, a programming language used to write algorithms using language
commands, a working environment that includes various command processing tools or data
import and export, graphic system that allows you to create user environments, work with
images or animations, libraries of mathematical functions, and various embedded algorithms
such as global optimum search algorithms, API interface for implementing C or Fortran scripts,
Toolboxes with various optional libraries of specialized functions (e.g. for fuzzy logic, neural
networks, statistics), and an open architecture for implementing various systems. A very
effective and standalone extension of the Matlab system is the graphical interactive Simulink
program, which allows you to simulate and model various dynamic systems using graphics
schemes using Matlab functions and commands.

2 Numerical methods for finding roots

In the Matlab computational environment, the roots of a polynomial function can be searched
for directly by the built-in roots function, where the coefficients of the polynomial are
determined by the vector. Consider, for example, function 𝑓(𝑥) = −𝑥4 + 3𝑥2 + 2𝑥 and find
its roots. First, a coefficient vector must be created (which must also include zero coefficients
in order not to reduce the degree of the polynomial).

>> c = [-1 0 3 2 0];

>> roots(c)

ans =

 0

 2.0000

 -1.0000

 -1.0000

Given function and its roots can be viewed in the chart (Figure 1).

x = -2.5:0.005:2.5;

y = -x.^4 + 3*x.^2 + 2*x;

h = plot(x, y);

set(h, 'LineWidth', 3);

grid on

Figure 1: Function Graph 𝑓(𝑥) = −𝑥4 + 3𝑥2 + 2𝑥.

Ďuriš V., Korman P.: Root Approximation in Matlab Computational Environment 3

For any function (not only in the case of a polynomial), if an algebraic equation 𝑓(𝑥) = 0 is
given with real coefficients having within an interval (𝑎, 𝑏) exactly one real root 𝑘, we can

approximate it with the ab ante desired accuracy 𝜀 using the fzero function, also built-in
directly in Matlab. The fzero function can be called with either a two-element vector
representing the interval (𝑎, 𝑏) or only with a starting point 𝑥0 from which the search is to be
started. In this case, the fzero function first finds such an interval around the starting point
at which the function 𝑓(𝑥) changes its sign. If it does not find such an interval, it returns NaN.

However, if we know the appropriate interval (𝑎, 𝑏) beforehand, it is guaranteed that fzero
function successfully returns a value close to the root of the equation. Now consider the
function 𝑓(𝑥) = 𝑥3 − 7𝑥 + 1 on the interval (0,1) (Figure 2) and find the solution to the
equation 𝑓(𝑥) = 0.

>> f = inline('x^3 - 7*x + 1');

>> k = fzero(f, [0 1])

k = 0.1433

If you need to see the exact steps of the fzero function, you can set their display using the
Display parameter of the options [3] structure. The accuracy 𝜀 is also possible to be set

with optimset function.

>> setdsp = optimset('Display', 'iter');

>> k = fzero(f, [0 1], setdsp)

 Func-count x f(x) Procedure

 2 0 1 initial

 3 0.166667 -0.162037 interpolation

 4 0.143426 -0.00103363 interpolation

 5 0.143277 5.13222e-007 interpolation

 6 0.143277 -4.73821e-012 interpolation

 7 0.143277 -2.22045e-016 interpolation

 8 0.143277 -2.22045e-016 interpolation

Zero found in the interval [0, 1]

k = 0.1433

Figure 2: Function Graph 𝑓(𝑥) = 𝑥3 − 7𝑥 + 1.

We can also solve non-linear equations numerically using the method of half division of the
interval (so-called bisection) [4]. Let the interval 〈𝑎, 𝑏〉 be one of the intervals containing the
root of the equation 𝑓(𝑥) = 0. We will find a solution in this interval if 𝑓(𝑎) ∙ 𝑓(𝑏) < 0. Let's
define a sequence of intervals 〈𝑎𝑛, 𝑏𝑛〉 with the following properties (Figure 3):

1. 〈𝑎1, 𝑏1〉 = 〈𝑎, 𝑏〉

4 Acta Mathematica Nitriensia, Vol. 5, No. 2, p. 1-10

2. Next, we take the middle of the interval 𝑐1 =
𝑎1+𝑏1

2
 and if this point is the solution to

that equation, we will terminate the process, otherwise 𝑓(𝑐1) ≠ 0. Then either
𝑓(𝑎1) ∙ 𝑓(𝑐1) < 0 and then 〈𝑎2, 𝑏2〉 = 〈𝑎1, 𝑐1〉, or 𝑓(𝑏1) ∙ 𝑓(𝑐1) < 0 and then
〈𝑎2, 𝑏2〉 = 〈𝑐1, 𝑏1〉.

3. Suppose we defined such an interval 〈𝑎𝑛, 𝑏𝑛〉 that 𝑓(𝑎𝑛) ∙ 𝑓(𝑏𝑛) < 0. We take the

middle of the interval 𝑐𝑛 =
𝑎𝑛+𝑏𝑛

2
 again. If this point is the solution of the given

equation we will terminate the process, otherwise 𝑓(𝑐𝑛) ≠ 0. Then either 𝑓(𝑎𝑛) ∙
𝑓(𝑐𝑛) < 0 and then 〈𝑎𝑛+1, 𝑏𝑛+1〉 = 〈𝑎𝑛, 𝑐𝑛〉, or 𝑓(𝑏𝑛) ∙ 𝑓(𝑐𝑛) < 0 and then
〈𝑎𝑛+1, 𝑏𝑛+1〉 = 〈𝑐𝑛, 𝑏𝑛〉.

Figure 3: Method of bisection.

If the sequence {𝑐𝑛} has a finite number of members, then the last is the root of the equation
𝑓(𝑥) = 0. If it is infinite, then it has a finite limit, which is the exact solution to our equation.
At each step, the length of the interval was reduced by half, and thus for an approximate

solution 𝑐𝑛 the estimate |𝑐𝑛 − 𝑘| <
𝑏−𝑎

2𝑛 applies, where 𝑘 is the exact solution. To determine

the approximate solution with accuracy 𝜀 > 0, then we terminate the process of dividing the

interval when |𝑏𝑛 − 𝑎𝑛| < 2𝜀 and we will accept an approximate solution 𝑐𝑛 =
𝑎𝑛+𝑏𝑛

2
. From

the inequality |𝑐𝑛 − 𝑘| <
𝑏−𝑎

2𝑛 (if its right side is less than 𝜀) we get 𝑛 >
1

ln 2
ln (

𝑏−𝑎

𝜀
), which

represents the number of iterations needed for accuracy 𝜀. If the conditions are satisfied that
the function is continuous and assumes different characters at the ends of a given interval,
then this method is always convergent. The following function (such as the m-file
bisection.m) presents the method of bisection in the Matlab environment.

function [f_root, term_type] = bisection(funct, tol, maxiter,

a, b)

iterations = 0;

term_type = 0;

f_root = NaN;

f_a = feval(funct, a);

f_b = feval(funct, b);

while (f_a * f_b<0) && (iterations<maxiter) && ((b - a)>tol)

 c = (b + a) / 2;

 f_c = feval(funct, c);

 if (f_c * f_a) < 0

Ďuriš V., Korman P.: Root Approximation in Matlab Computational Environment 5

 b = c;

 f_b = f_c;

 else

 a = c;

 f_a = f_c;

 end

 iterations = iterations + 1;

end

 if (iterations == maxiter)

 term_type = 1;

else

 f_root = c;

 term_type = iterations;

end

 end

Now we can find the root of the equation using the created function 𝑓(𝑥) = 𝑥 − 2 𝑠𝑖𝑛 𝑥2 on
the interval 〈0.5,1〉. We create the function 𝑓(𝑥) as a separate m-file to call as a real parameter

of the formal funct parameter in the bisection function.

function y = f(x)

y = x - 2*sin(x.^2);

To call the bisection function, run the script (bisect.m file) specified below for accuracy
𝜀 = 10−4 and a maximum of 50 iterations allowed.
[f_root, term_type] = bisection('f', 1e-4, 50, 0.5, 1);

 if (term_type == 0)

 disp('The interval does not contain the root or contains

more roots!')

elseif (term_type == 1)

 disp('The root could not be found within the specified

number of iterations!')

else

 disp(['Root = ' num2str(f_root) ' found in '

num2str(term_type) ' iterations.'])

end

We get the result (Figure 4):
>> bisect

Root = 0.50543 found in 13 iterations.

6 Acta Mathematica Nitriensia, Vol. 5, No. 2, p. 1-10

Figure 4: Function Graph 𝑓(𝑥) = 𝑥 − 2 𝑠𝑖𝑛 𝑥2.

Another option for finding the roots of a given function is to use the chord method (the so-

called false-proposition method) [5]. Assume 𝑓(𝑎) ∙ 𝑓(𝑏) < 0. The chord method consists in

replacing the function 𝑓(𝑥) in the interval (𝑎, 𝑏) by a chord given by points 𝐴(𝑎, 𝑓(𝑎)),

𝐵(𝑏, 𝑓(𝑏)), whose equation is 𝑦 − 𝑓(𝑎) =
𝑓(𝑏)−𝑓(𝑎)

𝑏−𝑎
(𝑥 − 𝑎) (Figure 5).

Figure 5: Method of chords.

Lay 𝑦 = 0 and calculate the intersection point 𝑥1 = 𝑎 −
𝑏−𝑎

𝑓(𝑏)−𝑓(𝑎)
𝑓(𝑎) with 𝑥 axis. If the sign

of 𝑓(𝑥1) equals the sign of 𝑓(𝑎), we lay 𝑥1 = 𝑎1. Proceed in this way and get approximations

𝑎2 = 𝑎1 −
𝑏−𝑎1

𝑓(𝑏)−𝑓(𝑎1)
𝑓(𝑎1) , 𝑎3, 𝑎4, ... that converge to the root 𝑘. If the sign of 𝑓(𝑥1) equals

the sign of 𝑓(𝑏), we lay 𝑥1 = 𝑏1, then 𝑏1 = 𝑎 −
𝑏−𝑎

𝑓(𝑏)−𝑓(𝑎)
𝑓(𝑎) as well as in the next process

we get approximations 𝑏2 = 𝑎 −
𝑏1−𝑎

𝑓(𝑏1)−𝑓(𝑎)
𝑓(𝑎) , 𝑏3 , 𝑏4 , … converging to the root. The chord

method algorithm as a function written in Matlab then looks like [6]:

function f_root = false_proposition(f, tol, a, b)

fa = feval(f, a);

fb = feval(f, b);

 while (abs(fa) > tol) && (abs(fb) > tol)

 x1 = a - (b - a) / (fb - fa) * fa;

 fx1 = feval(f, x1);

 if (fx1 * fa) > 0

 a = x1;

 else

 b = x1;

 end

 fa = feval(f, a);

 fb = feval(f, b);

end

 f_root = x1;

 end

Ďuriš V., Korman P.: Root Approximation in Matlab Computational Environment 7

Now we find the root of the equation 𝑥3 − 5𝑥2 − 16𝑥 + 53 = 0 in the interval 〈2,3〉 by the
chord method with precision of 𝜀 = 10−4.
>> format long

>> f = inline('x^3 - 5*x^2 - 16*x + 53');

>> f_root = false_proposition(f, 1.e-4, 2, 3)

f_root = 2.38347756851597

The tangent method (the Newton method) belongs among the important methods of roots
approximation. The development of mechanics in the 17th century played its role in solving
the problem of tangents, seeking their analytical expression and constructions. The
correlation of physical factors of movement with the curve geometry of the moving point
curve has crystallized into the concept that the direction of movement at each point of the
trajectory is determined by the tangent to the curve at that point. The first concepts of
tangents date back to antiquity [7], according to which the tangent line had one point in
common with the curve. In modern differential geometry for higher-grade algebraic curves
and transcendental curves, the original static concept of tangent has been replaced by the
dynamic understanding of the tangent as the limit position of the secant with "infinitely close"
intersections with the curve. In such a view of the tangent, various physical factors stemming
from Galileo's theory of motion could have entered into the tangent theory. Isaac Newton
(1642 - 1727), a mathematician and physicist, proved the solution to the tangent problem
from the perspective of infinitesimal calculus by his methods and he described his methods of
finding approximate algebraic solutions in 1699 in his work De analysi per aequationes numero
terminorum infinitas, published 12 years later by British mathematician William Jones. In
1740, based on this work, British mathematician Thomas Simpson introduced a new iterative
method for solving general non-linear equations.

Suppose a given function 𝑦 = 𝑓(𝑥) has a derivative. We choose the initial root approximation
𝑥0. We run the tangent to the graph of function f through the point [𝑥0, 𝑓(𝑥0)]. Mark 𝑥1 its
intersection with the 𝑥 axis. Then we lead the tangent through the point [𝑥1, 𝑓(𝑥1)]. Mark 𝑥2
its intersection with the 𝑥 axis. This proceeds further (Figure 6) [8].

Figure 6: Newton method.

Suppose we know 𝑥𝑘 and we want to calculate a closer approximation 𝑥𝑘+1. We run the

tangent through the point [𝑥𝑘, 𝑓(𝑥𝑘)] to the curve 𝑦 = 𝑓(𝑥). Substitute to the tangent

equation

8 Acta Mathematica Nitriensia, Vol. 5, No. 2, p. 1-10

𝑦 = 𝑓(𝑥𝑘) + 𝑓′(𝑥𝑘)(𝑥 − 𝑥𝑘)

by 𝑦 = 0 to obtain the intersection of the tangent line with the 𝑥 axis:

𝑥𝑘+1 = 𝑥𝑘 −
𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)

We will now deduce the error of this method. Let 𝑒𝑘 = 𝑥𝑘 − 𝑥∗ is an error in the 𝑘-th step.

Let us make Taylor expansion [9] 𝑓(𝑥∗) around 𝑥𝑘. Now suppose that the second derivative

also exists. It is valid from the definition of Taylor expansion that its sum around the point

equals the functional value at this point, so

0 = 𝑓(𝑥∗) = 𝑓(𝑥𝑘) + (𝑥∗ − 𝑥𝑘)𝑓′(𝑥𝑘) +
1

2
(𝑥∗ − 𝑥𝑘)2𝑓′′(𝜑),

where 𝜑 is a point of the interval whose limit values are 𝑥𝑘 and 𝑥∗.

After simplification we get

−
1

2
(𝑥∗ − 𝑥𝑘)2

𝑓′′(𝜑)

𝑓′(𝑥𝑘)
=

𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
+ (𝑥∗ − 𝑥𝑘)

−
1

2
(𝑥∗ − 𝑥𝑘)2

𝑓′′(𝜑)

𝑓′(𝑥𝑘)
= 𝑥∗ − [𝑥𝑘 −

𝑓(𝑥𝑘)

𝑓′(𝑥𝑘)
] = 𝑥∗ − 𝑥𝑘+1

1

2
𝑒𝑘

2
𝑓′′(𝜑)

𝑓′(𝑥𝑘)
= 𝑒𝑘+1

Then

lim
𝑘→∞

|𝑒𝑘+1|

|𝑒𝑘|2
=

|𝑓′′(𝜑)|

|𝑓′(𝑥𝑘)|

And we see that the Newton method converges quadratically. We can now find the root of
the equation 𝑓(𝑥) = 𝑥 − 2 𝑠𝑖𝑛 𝑥2 using the Newton method. For this purpose we created 3
functions in Matlab. The first represents the given function, the second represents its
derivative:
function y = f(x)

y = x - 2*sin(x.^2);

function y = f2(x)

y = 1 - 4*x.*cos(x.^2);

The third function is the algorithm of the Newton method itself.
function [f_root, term_type] = newton(tol, x, maxiter)

 iterations = 0;

 while (iterations < maxiter) && (abs(f(x)) > tol)

 x = x - f(x) / f2(x);

 iterations = iterations + 1;

end

if (iterations == maxiter)

 term_type = 1;

else

 f_root = x;

 term_type = iterations;

end

 end

Ďuriš V., Korman P.: Root Approximation in Matlab Computational Environment 9

We call the newton function by running the script (newton2.m) lower with precision 𝜀 =
10−4 and a maximum of 50 iterations allowed.
[f_root, term_type] = newton(1e-4, 1, 50);

if (term_type == 1)

 disp('Root not found!')

else

 disp(['Root = ' num2str(f_root) ' found in '

num2str(term_type) ' iterations.'])

end

We get the result:
>> newton2

Root = 0.50548 found in 4 iterations.

We can see that compared to the bisection method, we have obtained a root approximation
with a significantly lower number of iterations due to quadratic convergence. The Newton
method can also diverge. However, the method always converges, provided that the initial
approximation is sufficiently close to the root. By appropriate combining the bisection method
with the Newton method, it is possible to construct a combined method that always
converges.

Conclusion

Mathematics provides a variety of analytical or algebraic tools to solve practical problems
from different industries. However, many practical tasks result from the compilation of such
equations or functions that are analytically insolvable or very difficult to solve. Thanks to
numerical mathematics and computers, we can now construct algorithms for virtually every
problem. These algorithms are able to find approximate (or even accurate) solutions within
the accuracy we require, and our analytical task remains to determine the error estimate of
the inaccurate solution. Root approximation means expressing the problem of solving the
equation in a form useful in the field of iterative processes, which is also the bisection method,
the chord method or the Newton method, obtaining a root value that is as accurate as possible
to the true value. The roots approximation in the Matlab computational environment in terms
of computations includes convergent methods, by means of which we can find solutions of
non-linear equations with any degree of accuracy and thus Matlab proves to be a very suitable
tool for implementing algorithms of various numerical methods.

References

1. Pickover C. A. (2011). The Math Book: From Pythagoras to the 57th Dimension, 250

Milestones in the History of Mathematics. New York, NY: Sterling Publishing, ISBN:

9781402757969.

2. Higham D. J., Higham N. J. (2017). MATLAB Guide, 3e. USA: SIAM, ISBN: 9781611974652.

3. Mathworks. (2019). Online documentation. Available at:

https://www.mathworks.com/help/matlab/ref/optimset.html, accessed 7th of June,

2019.

10 Acta Mathematica Nitriensia, Vol. 5, No. 2, p. 1-10

4. Otto S. R., Denier J. P. (2005). An introduction to Programming and Numerical Methods

in MATLAB. London: Springer-Verlag London Limited, ISBN: 9781852339197.

5. Palumbíny D., Palumbíny O. (2002). Algebra 2. Nitra: Constantine The Philosopher

University, ISBN: 8080505454.

6. Fulier J., Ďuriš V., Frantová P. (2007). Systémy počítačovej algebry CAS vo vyučovaní

matematiky. Nitra: Constantine The Philosopher University, ISBN 9788080941390.

7. Čižmár J. (2017). Dejiny matematiky – od najstarších čias po súčasnosť. Bratislava:

PERFECT, Slovak Republic, ISBN: 9788080468293.

8. Polyak B. T. (2007). Newton’s method and its use in optimization. In: European Journal of

Operational Research, Vol. 181, No. 3, p. 1086-1096, DOI: 10.1016/j.ejor.2005.06.076.

9. Plofker K. (2001). The “Error” in the Indian “Taylor Series Approximation” to the Sine. In:

Historia Mathematica, Vol. 28, No. 4, p. 283–295, DOI:10.1006/hmat.2001.2331.

