Arithmetic Mean and Geometric Mean

Marek Varga ${ }^{a *}$ - Peter Michalička ${ }^{b}$
${ }^{a}$ Department of Mathematics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, SK-949 74 Nitra
${ }^{\text {b }}$ Narodna banka Slovenska, Imricha Karvasa 1, 81325 Bratislava

Received 1 October 2016; received in revised form 12 October 2016; accepted 14 October 2016

Abstract

In mathematics we define several types of means. Probably the most known are the arithmetic and geometric means. If we are given n nonnegative numbers $x_{1}, x_{2}, \ldots x_{n}$; then the number $A_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}$ we call the arithmetic mean and the number $G_{n}=\sqrt[n]{x_{1} x_{2} \ldots x_{n}}$ we call the geometric mean of the numbers given. In the first part of the paper with the use of functions' their of more variables we will show that for each natural number $n \quad A_{n} \geq G_{n}$ applies. In the second part we will try to show the same, however, without using the differential calculus.

Keywords: arithmetic mean, geometric mean, proof, differential calculus
Classification: E55

Introduction

When given n nonnegative numbers $x_{1}, x_{2}, \ldots x_{n}$. Then the number $A_{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}$ we call the arithmetic mean of the numbers $x_{1}, x_{2}, \ldots x_{n}$. Number $G_{n}=\sqrt[n]{x_{1} x_{2} \ldots x_{n}}$ we call the geometric mean of numbers $x_{1}, x_{2}, \ldots x_{n}$. We will try to find the relation between numbers A_{n} a G_{n}.

Problem A1.

Divide the positive number k into two addends so their product would be the highest the possible.

Solution.

(See in [2]) Lets divide number k into two parts, which will be labeled as x a y ($0 \leq x \leq k$; 0 $\leq y \leq k$). Product of this two addends should be as high as possible, that is we search the global maximum of the function $s(x, y)=x y$; while $x+y=k$ applies. We can see, extreme of the two variables function should be found $s=s(x, y)$. However, it will be easier to calculate the global maximum of the one variable function. $s=s(x)=x(k-x)$; where $x \in\langle 0 ; k\rangle$. When solving the equation $s^{\prime}(x)=0$ we will get the stationary point $u_{0}=\frac{k}{2}$. With the help of the second

[^0]derivation $s^{\prime \prime}(x)$ and comparison of the value_ $s\left(\frac{k}{2}\right)$ with values $s(0), s(k)$ we will find out, that the function $s(x)$ acquires its highest value in point $u_{0}=\frac{k}{2}$. It means, that the function $s(x, y)$ acquires global maximum in the point $X_{0}\left[\frac{k}{2} ; \frac{k}{2}\right]$. So if $0 \leq x, 0 \leq y, x+y=k$, then $x y \leq \frac{k}{2} \cdot \frac{k}{2}=\left(\frac{k}{2}\right)^{2}=\left(\frac{x+y}{2}\right)^{2}$. Thence implies, that
$$
\sqrt{x y} \leq \frac{x+y}{2}, \text { this is } G_{2} \leq A_{2}
$$

Problem A2.

Divide the positive number k into three addends so their product would be the highest the possible.

Solution.

(See in [1]) Lets divide number k into three parts, which will be labeled as x, y a $z(0 \leq x \leq$ $k ; 0 \leq y \leq k ; 0 \leq z \leq k)$. Product of this three addends should be as high as possible, that is we search the global maximum of the function $s(x, y, z)=x y z$; while $x+y+z=k$ applies. Again, we will make the problem easier - we will search global maximum of the two variable function

$$
s(x, y)=x y(k-x-y)
$$

in the domain restricted by the lines $x=0, y=0, x+y=k$. When solving the scheme of equation

$$
\begin{aligned}
& s_{x}^{\prime}(x, y)=0 \\
& s_{y}^{\prime}(x, y)=0
\end{aligned}
$$

we will get stationary points $U_{0}\left[\frac{k}{3} ; \frac{k}{3}\right] ; \quad U_{1}[0 ; k] ; \quad U_{2}[k ; 0] ; \quad U_{3}[0 ; 0]$. It will be easily possible to show that the function $s(x, y)$ acquires its highest value at the point $U_{0}\left[\frac{k}{3} ; \frac{k}{3}\right]$. It means that the function $s(x, y, z)$ acquires global maximum at the point $X_{0}\left[\frac{k}{3} ; \frac{k}{3} ; \frac{k}{3}\right]$. Therefore if $0 \leq x, 0 \leq y, 0 \leq z$, then $x y z \leq \frac{k}{3} \cdot \frac{k}{3} \cdot \frac{k}{3}=\left(\frac{k}{3}\right)^{3}=\left(\frac{x+y+z}{3}\right)^{3}$ applies. Thence it follows that

$$
\sqrt[3]{x y z} \leq \frac{x+y+z}{3}, \text { that is } G_{3} \leq A_{3}
$$

Problem A3.

Find the highest value of the n-extraction of the n positive numbers $x_{1}, x_{2}, \ldots x_{n}$ product when conditioned that the sum of these numbers is equal to number k.

Solution.

(See in [1]) In the previous sum we have found the maximum of the function $s\left(x_{1}, x_{2}, \ldots x_{n}\right)=\sqrt[n]{x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}}$, while $x_{1}+x_{2}+\ldots+x_{n}=k$ applies. We say that by the equality $x_{1}+x_{2}+\ldots+x_{n}=k$ the bond is given, that is we calculate the fixed extreme of the function $s\left(x_{1}, x_{2}, \ldots x_{n}\right)$. We will set the Lagrange function

$$
L\left(x_{1}, x_{2}, \ldots x_{n}, \lambda\right)=\sqrt[n]{x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}}+\lambda\left(x_{1}+x_{2}+\ldots+x_{n}-k\right)
$$

Stationary points will be found when solving the system of equations

$$
\begin{aligned}
& \frac{\partial L\left(x_{1}, x_{2}, \ldots x_{n}, \lambda\right)}{\partial x_{1}}=0 \\
& \frac{\partial L\left(x_{1}, x_{2}, \ldots x_{n}, \lambda\right)}{\partial x_{2}}=0 \\
& \vdots \\
& \frac{\partial L\left(x_{1}, x_{2}, \ldots x_{n}, \lambda\right)}{\partial x_{n}}=0 \\
& \frac{\partial L\left(x_{1}, x_{2}, \ldots x_{n}, \lambda\right)}{\partial \lambda}=0
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}=\frac{1}{n} \frac{x_{2} \cdot x_{3} \cdot \ldots \cdot x_{n}}{\left(x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}\right)^{\frac{n-1}{n}}}+\lambda=\frac{1}{n} \frac{L}{x_{1}}+\lambda=0 \Rightarrow L=-n \lambda x_{1} \\
& \frac{\partial L}{\partial x_{2}}=\frac{1}{n} \frac{x_{1} \cdot x_{3} \cdot \ldots \cdot x_{n}}{\left(x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}\right)^{\frac{n-1}{n}}}+\lambda=\frac{1}{n} \frac{L}{x_{2}}+\lambda=0 \Rightarrow L=-n \lambda x_{2} \\
& \vdots \\
& \frac{\partial L}{\partial x_{n}}=\frac{1}{n} \frac{x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n-1}}{\left(x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}\right)^{\frac{n-1}{n}}}+\lambda=\frac{1}{n} \frac{L}{x_{n}}+\lambda=0 \Rightarrow L=-n \lambda x_{n} \\
& \frac{\partial L}{\partial \lambda}=x_{1}+x_{2}+\ldots+x_{n}-k=0
\end{aligned}
$$

Since $n \lambda x_{1}=n \lambda x_{2}=\ldots=n \lambda x_{n}$, the equality $x_{1}=x_{2}=\ldots=x_{n}$ have to apply. Thence out of the equation $\frac{\partial L}{\partial \lambda}=0$ it follows that $x_{1}=x_{2}=\ldots=x_{n}=\frac{k}{n}$. It could be verified, that the
function $s\left(x_{1}, x_{2}, \ldots x_{n}\right)$ acquires at the point $X_{0}\left[\frac{k}{n} ; \frac{k}{n} ; \ldots ; \frac{k}{n}\right]$ fixed global maximum. That means

$$
\sqrt[n]{x_{1} \cdot x_{2} \cdot \ldots \cdot x_{n}} \leq \sqrt[n]{\frac{k}{n} \cdot \frac{k}{n} \cdot \ldots \cdot \frac{k}{n}}=\frac{k}{n}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

applies, or $G_{n} \leq A_{n}$.

Problem B1.

Prove that for $\forall x_{1}, x_{2} \in R: x_{1}>1 \wedge x_{2}<1 \Rightarrow x_{1}+x_{2}>x_{1} x_{2}+1$.

Solution.

(See in [3]) Probably $x_{2}<1 \Leftrightarrow 1-x_{2}>0$. Then $0<1-x_{2}<x_{1}\left(1-x_{2}\right) \Leftrightarrow x_{1}+x_{2}>1+$ $x_{1} x_{2}$ due to $0<1<x_{1}$, what had to be shown.

Problem B2.

Prove that for $x_{i} \in R^{+}, i=1,2, \ldots, n$, and $\prod_{i=1}^{n} x_{i}=1$ applies $\sum_{i=1}^{n} x_{i} \geq n$.

Solution.

(See in [4]) The sum will be proved by mathematical induction:
a) $n=1: \quad x_{1}=1 \Rightarrow x_{1} \geq 1$ trivially applies;
b) $n=2: x_{1} x_{2}=1 \Rightarrow x_{1}+x_{2} \geq 2=1+x_{1} x_{2}$ applies according to the sum B 1 , consider:

If $x_{1} x_{2}=1$ then either $x_{1}=x_{2}=1$ and the sum is trivial again and $x_{1}+x_{2}=2$, or $x_{1} \neq x_{2}$. Then $x_{1}=1 / x_{2} \Leftrightarrow x_{2}=1 / x_{1}$ and without any loss on generality it is possible to suppose that e.g. $x_{1}>1 \wedge(0<) x_{2}<1$. Then according to B 1 it is obvious that $x_{1}+x_{2}>x_{1} x_{2}+1$, however when $x_{1} x_{2}=1$, then $x_{1}+x_{2}>2$. When combining the trivial and the general parts we get the affirmation in the form for $n=2$: $x_{1} x_{2}=1 \Rightarrow x_{1}+x_{2} \geq 2=1+x_{1} x_{2}$.
c) Lets follow in the induction generally. When $x_{i}=1$ for $\forall i=1,2 \ldots . n$, the affirmation applies trivially (with the character of equality).

Let for $x_{i} \in R^{+}, i=1,2, \ldots, n$, holds $\prod_{i=1}^{k} x_{i}=1 \Rightarrow \sum_{i=1}^{k} x_{i} \geq k$. Assume now that for $y_{j} \in R^{+}$, $j=1,2, \ldots, n+1$, holds $\sum_{j=1}^{n+1} y_{j}=1$. Without any loss of generality of the sum we will relabel the numbers, so $y_{1} \leq 1$ and $y_{2} \geq 1$.

Then $\left(1-y_{1}\right)\left(1-y_{2}\right) \leq 0$, or $1+y_{1} y_{2} \leq y_{1}+y_{2}$, and we obtain $1+y_{1} y_{2}+y_{3}+\cdots+$ $y_{n+1} \leq y_{1}+y_{2}+y_{3}+\cdots+y_{n+1}$.

Mark $x_{1}=y_{1} y_{2}, x_{2}=y_{3}, \ldots, x_{n}=y_{n+1}$. Then $\prod_{i=1}^{n} x_{i}=\prod_{j=1}^{n+1} y_{j}=1$. On base of induction hypothesis $\sum_{i=1}^{n} x_{i} \geq n$. Then we have

$$
\sum_{i=1}^{n} x_{i}=y_{1} y_{2}+\sum_{j=3}^{n+1} y_{j} \geq n \text { and so } 1+y_{1} y_{2}+\sum_{j=3}^{n+1} y_{j} \geq 1+n
$$

But $y_{1}+y_{2} \geq 1+y_{1} y_{2}$, so

$$
y_{1}+y_{2}+\sum_{j=3}^{n+1} y_{j} \geq 1+n, \text { finally } \sum_{j=1}^{n+1} y_{j} \geq 1+n
$$

Problem B3.

Prove that for: $\forall x_{i} \in R^{+}$pre $i=1,2, \ldots n$ platí: $G_{n}=\sqrt[n]{\prod_{i=1}^{n} x_{i}} \leq \frac{1}{n} \sum_{i=1}^{n} x_{i}=A_{n} \quad$ (thus the geometric mean G_{n} of positive real numbers x_{i} is smaller or at a most equal to the arithmetic mean A_{n} of these numbers).

Solution.

(See in [3]) If the inequality that have to be proved will be simply turned into the form $\frac{1}{n} \sum_{i=1}^{n} x_{i} \geq \sqrt[n]{\prod_{i=1}^{n} x_{i}}$ and multiplied by the term $\frac{n}{\sqrt[n]{\prod_{i=1}^{n} x_{i}}}$, we will get $\frac{\sum_{i=1}^{n} x_{i}}{\sqrt[n]{\prod_{i=1}^{n} x_{i}}} \geq n$. Lets label $\frac{x_{i}}{\sqrt[n]{\prod_{i=1}^{n} x_{i}}}=y_{i}$. Probably $\frac{\sum_{i=1}^{n} x_{i}}{\sqrt[n]{\prod_{i=1}^{n} x_{i}}}=\sum_{i=1}^{n} y_{i}$, where $y_{i}>0$ for $\forall i=1,2 \ldots n$. Finally, the reader will
consider that $\prod_{i=1}^{n} y_{i}=\prod_{i=1}^{n}\left(\frac{x_{i}}{\sqrt[n]{\prod_{i=1}^{n} x_{i}}}\right)=\frac{\prod_{i=1}^{n} x_{i}}{\left(\sqrt[n]{\prod_{i=1}^{n} x_{i}}\right)^{n}}=\frac{\prod_{i=1}^{n} x_{i}}{\prod_{i=1}^{n} x_{i}}=1$, so the numbers $y_{i}=\frac{x_{i}}{\sqrt[n]{\prod_{i=1}^{n} x_{i}}}$
meet the requests from the sum B2 thanks to what the proved inequality $G_{n} \leq A_{n}$ applies.

Conclusion

Using two different strategies (based on applying of differential calculus of function of more variables and using mathematical induction too) we have shown a well known inequality between geometric mean and arithmetic mean. We are sure there could be illustrated further extension and generalization of this relation. Namely more complex inequalities could be demonstrated using college knowledge, such as $H_{n} \leq G_{n} \leq A_{n} \leq K_{n}$, where $H_{n}=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}$ is harmonic mean and $K_{n}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_{i}^{2}}$ is quadratic mean.

References

[1] Marek Varga: Zbierka úloh z matematickej analýzy II; FPV UKF Nitra, 2005, ISBN 80-8050-865-8
[2] Peter Michalič̌A: http://www.elearn.ukf.sk/file.php/21/MATIND.PDF, e-learn kurz
[3] ZbYněk Kubáček, Ján Valášek: Cvičenia z matematickej analýzy I, UK Bratislava, 1994, ISBN 80-223-0749-1
[4] Alois Kufner: Nerovnosti a odhady, ŠMM, Mladá Fronta, Praha, 1975. - 120 s.

[^0]: * Corresponding author; email: mvarga@ukf.sk

 DOI: 10.17846/AMN.2016.2.2.43-48

