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Abstract 

In mathematics we define several types of means. Probably the most known are the arithmetic and geometric 

means.  If we are given  n  nonnegative numbers  x1, x2, ... xn;  then the number  1 2 n
n

x x x
A

n

  
   we call 

the arithmetic mean and the number 1 2
n

n nG x x x   we call the geometric mean of the numbers given. In 

the first part of the paper with the use of functions´ their of more variables we will show that for each natural 

number  n    
n nA G  applies. In the second part we will try to show the same, however, without using the 

differential calculus. 
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Introduction 

When given  n  nonnegative numbers  x1, x2, ... xn.  Then the number 

1 2 n
n

x x x
A

n

  
 we call the arithmetic mean of the numbers  x1, x2, ... xn. Number 

1 2
n

n nG x x x  we call the geometric mean of numbers  x1, x2, ... xn. We will try to find the 

relation between numbers  An  a  Gn. 

Problem A1. 

Divide the positive number  k  into two addends so their product would be the highest the 

possible.   

Solution. 

(See in 2)  Lets divide number  k  into two parts, which will be labeled as x  a  y  (0  x  k;  0 

 y  k).  Product of this two addends should be as high as possible, that is we search the global 

maximum of the function s(x, y) = xy;  while  x + y = k  applies. We can see, extreme of the two 

variables function should be found  s = s(x, y).  However, it will be easier to calculate the global 

maximum of the one variable function. s = s(x) = x(k – x);  where  x0; k. When solving the 

equation  s(x) = 0  we will get the stationary point  0
2

k
u  .  With the help of the second 
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derivation  s(x)  and comparison of the value  
2

k
s
 
 
 

 with values  s(0),  s(k)  we will find out, 

that the function  s(x)  acquires its highest value in point 0
2

k
u  . It means, that the function  

s(x, y)  acquires global maximum in the point  0 ;
2 2

k k
X

 
 
 

.  So if 0  x,  0  y,  𝑥 + 𝑦 = 𝑘,  then  

2 2

2 2 2 2

k k k x y
xy

   
      

   
. Thence implies, that   

2

x y
xy


 ,  this is 2 2G A . 

Problem A2. 

Divide the positive number  k  into three addends so their product would be the highest the 

possible.   

Solution. 

(See in 1)  Lets divide number  k  into three parts, which will be labeled as  x,  y  a  z  (0  x  

k;  0  y  k;  0  z  k).  Product of this three addends should be as high as possible, that is we 

search the global maximum of the function s(x, y, z) = xyz;  while  x + y + z = k  applies. Again, 

we will make the problem easier – we will search global maximum of the two variable function   

s(x, y) = xy(k – x – y) 

in the domain restricted by the lines x = 0,  y = 0,  x + y = k. When solving the scheme of 

equation  

 

 

, 0

, 0

x

y

s x y

s x y

 

 
 

we will get stationary points       0 1 2 3; ; 0; ; ; 0 ; 0; 0
3 3

k k
U U k U k U

 
 
 

.  It will be easily 

possible to show that the function  s(x, y)  acquires its highest value at the point  0 ;
3 3

k k
U

 
 
 

. 

It means that the function  s(x, y, z)  acquires global maximum at the point  0 ; ;
3 3 3

k k k
X

 
 
 

.  

Therefore if 0  x,  0  y,  0  z, then  
3 3

3 3 3 3 3

k k k k x y z
xyz

    
       

   
 applies. Thence it 

follows that 

3

3

x y z
xyz

 
 ,  that is  3 3G A . 
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Problem A3. 

Find the highest value  of the n – extraction  of the n positive numbers x1, x2, ... xn product 

when conditioned that the sum of these numbers is equal to number  k. 

Solution. 

(See in 1)  In the previous sum we have found the maximum of the function  

 1 2 1 2, , n
n ns x x x x x x    ,  while  x1 + x2 + ... + xn = k  applies. We say that by the equality  

x1 + x2 + ... + xn = k  the bond is given, that is we calculate the fixed extreme of the function  

s(x1, x2, ... xn). We will set the Lagrange function 

   1 2 1 2 1 2, , , n
n n nL x x x x x x x x x k          . 

Stationary points will be found when solving the system of equations 

 

 

 

 

1 2

1

1 2

2

1 2

1 2

, , ,
0

, , ,
0

, , ,
0

, , ,
0

n

n

n

n

n

L x x x

x

L x x x

x

L x x x

x

L x x x

 




 




 




 




 

we obtain 

 

 

 

2 3
11

1 1
1 2

1 3
21

2 2
1 2

1 2 1
1

1 2

1 2

1 1
0

1 1
0

1 1
0

0

n
n

nn

n
n

nn

n
nn

n n
nn

n

x x xL L
L n x

x n n x
x x x

x x xL L
L n x

x n n x
x x x

x x xL L
L n x

x n n x
x x x

L
x x x k








  
          


  

  
          


  

  
          


  


     



 

Since  1 2 nn x n x n x      ,  the equality  1 2 nx x x    have to apply. Thence out of 

the equation  0
L



 it follows that 1 2 n

k
x x x

n
    . It could be verified, that the 
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function   1 2, , ns x x x   acquires at the point  0 ; ; ;
k k k

X
n n n

 
 
 

  fixed global maximum. That 

means  

1 2
1 2

n nn
n

x x xk k k k
x x x

n n n n n

  
          

applies,  or  n nG A .  

Problem B1. 

Prove that for 1 2 1 2 1 2 1 2, : 1 1 1x x R x x x x x x         . 

Solution. 

(See in 3)  Probably  2 21 1 0x x    .  Then  0 < 1 − 𝑥2 < 𝑥1(1 − 𝑥2) 𝑥1 + 𝑥2 > 1 +

𝑥1𝑥2  due to  0 < 1 < 𝑥1,  what had to be shown. 

Problem B2. 

Prove that for  𝑥𝑖 ∈ 𝑅
+,  i = 1, 2, …, n,  and  ∏ 𝑥𝑖

𝑛
𝑖=1 = 1  applies  

1

n

i

i

x n


 . 

Solution.  

(See in 4)  The sum will be proved by mathematical induction: 

a)  n = 1:  1 11 1x x     trivially applies; 

b)  n = 2:  1 2 1 2 1 21 2 1x x x x x x        applies according to the sum B1, consider:  

If  1 2 1x x    then either  x1 = x2 = 1  and the sum is trivial again and  1 2 2x x  ,  or  x1 x2.  

Then  1 2 2 11/ 1/x x x x     and without any loss on generality it is possible to suppose that 

e.g.  1 2(0 )1 1x x   .  Then according to B1 it is obvious that  1 2 1 2 1x x x x   ,  however 

when  1 2 1x x  ,  then  1 2 2x x  .  When combining the trivial and the general parts we get 

the affirmation in the form for  n = 2:  1 2 1 2 1 21 2 1x x x x x x      . 

c)  Lets follow in the induction generally. When 1ix  for 1,  2.... i n  , the affirmation applies 

trivially (with the character of equality). 

Let for  𝑥𝑖 ∈ 𝑅
+,  i = 1, 2, …, n,  holds  

11

1
k k

i i

ii

x x k


   .  Assume now that for  𝑦𝑗 ∈ 𝑅
+,  

j = 1, 2, …, n + 1,  holds  ∑ 𝑦𝑗 = 1𝑛+1
𝑗=1 .  Without any loss of generality of the sum we will re-

label the numbers, so  𝑦1 ≤ 1  and  𝑦2 ≥ 1. 

Then  (1 − 𝑦1)(1 − 𝑦2) ≤ 0,  or  1 + 𝑦1𝑦2 ≤ 𝑦1 + 𝑦2,  and we obtain  1 + 𝑦1𝑦2 + 𝑦3 +⋯+

𝑦𝑛+1 ≤ 𝑦1 + 𝑦2 + 𝑦3 +⋯+ 𝑦𝑛+1. 
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Mark  𝑥1 = 𝑦1𝑦2, 𝑥2 = 𝑦3, … , 𝑥𝑛 = 𝑦𝑛+1.  Then  ∏ 𝑥𝑖
𝑛
𝑖=1 = ∏ 𝑦𝑗

𝑛+1
𝑗=1 = 1.  On base of 

induction hypothesis  ∑ 𝑥𝑖
𝑛
𝑖=1 ≥ 𝑛.  Then we have   

∑ 𝑥𝑖
𝑛
𝑖=1 = 𝑦1𝑦2 + ∑ 𝑦𝑗

𝑛+1
𝑗=3 ≥ 𝑛  and so  1 + 𝑦1𝑦2 + ∑ 𝑦𝑗

𝑛+1
𝑗=3 ≥ 1 + 𝑛. 

But  𝑦1 + 𝑦2 ≥ 1 + 𝑦1𝑦2,  so   

𝑦1 + 𝑦2 + ∑ 𝑦𝑗
𝑛+1
𝑗=3 ≥ 1 + 𝑛,  finally  ∑ 𝑦𝑗

𝑛+1
𝑗=1 ≥ 1 + 𝑛. 

Problem B3. 

Prove that for: 
11

1
 pre  =1, 2, ... platí :

n n

n
i n i i n

ii

x R i n G x x A
n





      (thus the 

geometric mean Gn of positive real numbers xi is smaller or at a most equal  to the arithmetic 

mean An  of these numbers).  

Solution.  

(See in 3)  If the inequality that have to be proved will be simply turned into the form 

1 1

1 nn

n
i i

i i

x x
n  

   and multiplied by the term 

1

n

n
i

i

n

x




, we will get 1

1

n

i

i

n

n
i

i

x

n

x










. Lets label 

1

i
i

n

n
i

i

x
y

x






. Probably 1

1

1

n

i n
i

i
n

i
n

i

i

x

y

x













, where 0iy   for 1,2...i n  . Finally, the reader will 

consider that  1 1

1 1

11
1

1

n n

i in n
i i i

i n nn
ni i

n ini
i ii

i

x x
x

y

xx x

 

 




 
 
    
   
         

 
 

 

, so the numbers 

1

i
i

n

n
i

i

x
y

x






 

meet the requests from the sum  B2  thanks to what the proved inequality n nG A  applies. 

Conclusion 

Using two different strategies (based on applying of differential calculus of function of more 
variables and using mathematical induction too) we have shown a well known inequality 
between geometric mean and arithmetic mean. We are sure there could be illustrated further 
extension and generalization of this relation. Namely more complex inequalities could be 

demonstrated using college knowledge, such as n n n nH G A K   , where 

1

1n n

i i

n
H

x




 is 

harmonic mean and 2

1

1 n

n i

i

K x
n 

   is quadratic mean. 
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