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Abstract 

Limit of a sequence is one of the fundamental notions in university mathematics. Computing limits of various 

types is included in standard tasks. This paper is devoted to selected non-standard and/or problem limits. 

The sequences in question are defined by recursion, thus traditional algorithms are of no use here and must be 

superseded by other methods. 
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Introduction 

Limit of a sequence is one of the cornerstones of calculus. Based on this notion calculus 
defines the sum of infinite series, limit of a function (Heine definition), then derivative of 
a function (special type of a limit of a function) and finally also definite (Riemann) integral. 

Consequently, the main mathematical skills of university students who attend calculus 
courses must include also computation of various types of limits of a sequence. The pillars 
are the limits which may be referred to as paradigm limits, such as  
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As far as the computation is concerned, the simplest types of limits include the limit of 
a quotient of two polynomials. The method appropriate for its computation – dividing both 
the numerator and the denominator by the expression which “approaches infinity 
the fastest” – can also be generalized for computation of other limits of /   type. When 
dealing with limits of   type, which are often encountered in form of a difference of 
two roots, it is usually advantageous to extend the expression by means of multiplication by 

an appropriate fraction. Last but not least, there is a plentiful group of limits of  1 type,  and 
those can be solved by changing them into the form of number e , i. e. Euler‘s number. 
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All of the above mentioned methods should be mastered by an ordinary student, as they 
belong to standard tasks requiring only appropriate computational algorithms. So far we 
have not mentioned one important property of the previous examples – the sequences are 
defined in analytic way. 

A more challenging task is to find the limit of a sequence defined by recursion. Several 
examples are presented and discussed further in this paper. 

Existence and computation of limits 

For the purposes of computing the limits of sequences defined by recursion there is no 
general template-like algorithm. Yet, the main idea might be summarized in two steps – find 
out whether the limit of the given sequence exists, and then, if it exists, compute the limit. 
Firstly, let us note two important theorems which we refer to in the below presented 
examples. 

Weierstrass theorem (Wt1).  Let sequence  
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Weierstrass theorem (Wt2).  Let sequence  
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Cauchy – Bolzano convergence criterion (CBcc).  Sequence   
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
  is convergent if and only 

if for all 0   there exists 0n   such that for all 0,n m n ,  ,n m , it holds that  

n ma a   . 

Example 1. 

Find out whether the limit of sequence  
1n n

x



 exists, where 1x k , 1n nx k x   ;  

where 0k    is a given constant. 

Solution.  Our hypothesis implies that the given sequence is increasing – hereby we prove it 

by induction.  

Let 1n  . Obviously k k k  ; then also 1 2x k k k x    .  Assume now 

that 1n nx x  .  Then 1n nk x k x   , and it also holds that 1 1n n n nx k x k x x      . 
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Furthermore, we claim that the sequence in question is bounded above. The relation 
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Now, let us add another inductive proof. For 1n   it obviously holds that 1 1x k k   .  

Next, assume that 1nx k  ; then 
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solution      1
1 1 4

2
k    . 

Example 2. 

Show that sequence 1
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,  where nF   are Fibonacci numbers, is convergent. 

Solution.  The terms of Fibonacci sequence are defined by recursion as follows  

1 1F  ,  2 1F  ,  2 1n n nF F F   . 

 Let 0  .  According to Archimedean property of natural numbers there exists p  such 

that  
1

p
  .  However, let us assume p  4 in order to ensure that  nF n  for n p .   

If m n ,  then 1 1 0n m

n m

F F

F F

     ,  and the proof is done. Thus, let be m  ≠ n,  maintaining 

the generality, it may be assumed that m   n.   

Compute:   
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The sequence in question thus meets criterion (CBcc) and is therefore convergent. 
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Example 3. 

Find out whether the sequence defined by recursion 1
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Solution.  Obviously, for all n  it holds that 0na  , i. e. the sequence is bounded below.  

We need to analyze the monotony of the sequence. Comparing two subsequent terms we 

obtain hypothesis that the given sequence is non-increasing. In order to prove the 

hypothesis, assume that 1 2n na a  .  Then  
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We have obtained an equivalent statement, which, however, must be also verified:  
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 We made use of the Cassini’s identity, i. e.  2
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We can see that the given sequence is in fact non-increasing and bounded below, therefore 
according to theorem (Wt2) its limit exists. Mark lim n
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sequence, thus, converge to the square root of number a ,  and this “approaching” is 

relatively fast. This can be demonstrated for value 100a    and first estimate of 1 20a  .  

Then, we obtain 2 12,5a  ;  3 10,25a  ;  4 10,00305a  ...  At real approximation the first 

estimate can be, naturally, “more reasonable”. 

Example 4. 

Kepler’s equation sinx q x a    is used for determination of the position of planets in their 

orbits; while  0 1q  ,  a  are known constants,  x   is expected to be determined. Show 

that this equation has a single solution. 

Solution. Let 0x  .  Construct a number sequence  
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is a fixed number.  It means that 0m nx x  ,  or in other words criterion (CBcc) is met, i. 

e. limit lim n
n
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   exists. 

Applying limit transition in relation sinx q x a    we obtain sinq a   ,  so number   is 

the solution to Kepler’s equation. Now, we need to prove that this solution is independent of 

the choice of value 0x ,  which means that the position of the planet is univocal. Actually, if 

there were also    for which it would hold  
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sinq a  , then   sin sinq     2 sin cos
2 2

q
 

 . 

The latter suggests that    2 sin
2

q q


    .   

With respect to the value of number q the inequality holds only if 0  ,  i. e.    . 

Conclusion 

There are many techniques for computation of limits of sequences, depending on the type of 
the limit. However, in such cases the sequences are defined analytically. In the paper we 
present selected problem tasks – obstacles, non-standard nature of the circumstances and 
impossibility to use algorithmic methods to solve the tasks are caused by the fact that the 
sequences in question are defined by recursion. Firstly, as an example we chose a general 
mathematical task, secondly, a task whose solution is a well-known constant . Then we 

continued with a sequence whose terms approximate the square root of a positive number, 
and finally, we demonstrated an application of this issue in celestial mechanics. 
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