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Abstract 

The notion of number incorporates a few of aspects. It is mainly its sense accordingly its definition as a 

mathematical object and the assignation of fundamental properties of operations with numbers. The notation 

of numbers expressed by admissible characters and algorithms of operations are further aspects. Mathematically 

least important aspect is the verbal denomination of numbers finally. First aspect belongs to basic equipment of 

mathematicians and it has purely theoretical character. The theoretical bases of notation of numbers and also 

possibilities their interpretations in education of mathematics on grammar schools and in the preparation of 

teachers of mathematics are determined in the paper. 
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Introduction 

The comprehension of the principle notation of natural and rational numbers (we omit the 
notion of real number) in positional numeration system belongs in intellectual outfit perhaps 
of every person. It is possible to form the notion of natural even rational number onto primary 
school intuitively. There is a deeper understanding of essence numeration of numbers in the 
first year-class of grammar school. However the work with numbers of pupils even students 
and peoples anywise taper to acquaintance of algorithms various operations.  But already the 
importance of other numeration system as decimal for example binary hints that it should not 
be so. It appears at the moment through numeration of numbers that these algorithms of 
calculation are as good as equal in the positional numeration with any admissible ground. It is 
important for teachers of mathematics so as they perceived that basic knowledge make 
possible to inscribe positive numbers whether or not natural, rational or real effectively and 
moreover they guarantee comfortable practice of basic operations with numbers (Bürger [1] 
1973; Smítal [2] 1977; Vilenkin [4] 1977). 

1 Assumed knowledge numeration of numbers  

The exact definition of numbers as mathematical objects is fundamental assignment of 
theoretical arithmetic and it belongs at the university. Natural numbers inclusive of zero (ℕ0) 
are defined either as cardinal numbers of finite sets with utilization of set equivalence or they 
are defined axiomatically by Peano´s system of axioms. The structure of integers ℤ is raised 
consequently by algebraic middles over extension of the structure  (ℕ0, +,∙) and the structure 
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of rational numbers  ℚ by extension of the structure(ℤ, +,∙). Real numbers (ℝ) are defined 
either through the medium Dedekind´s cuts of ordered set ℚ or by fundamental sequences of 
rational numbers (Šalát [3], 1982). None of that is possible to use on grammar school, 
especially as regards natural numbers according as real numbers. 
The idea of equivalent sets emerges beside each other one-one assigning of elements of two 
sets with the same finite number points. So we can for example number two to explicate as 
common property of sets that contain some element and still one element, that they are 
equivalent, hence there is between them mentioned one-one assigning of elements. 
The key scopes for numeration of numbers are following theorem (assertions): 

A. Every non-empty subset of the set ℕ has the smallest element. 

B. Let 𝑎 ∈ ℕ0(ℚ0
+, ℝ0

+), 𝑏 ∈ ℕ(ℚ+, ℝ+). Then there is such natural number n, that 𝑎 <
𝑏𝑛 (Archimedean property). 

It is possible to advance proof of these assertions also on grammar school: 
   Let ∅ ≠ 𝑀 ⊆ ℕ0. Take arbitrary element 𝑚 ∈ 𝑀 and then smallest element of finite set 
{0,1, … , 𝑚} ∩ 𝑀 is also smallest element of set 𝑀.  

   We can consider in the case B as follows. Let 𝑎, 𝑏 ∈ ℚ0
+, 𝑎 =

𝑝

𝑞
, 𝑏 =

𝑟

𝑠
, 𝑝, 𝑞, 𝑟, 𝑠 ∈ ℕ. It suffices 

to put  𝑛 = 𝑝(𝑠 + 1) because  

𝑎 =
𝑝

𝑞
≤ 𝑝 < 𝑝

(𝑠+1)

𝑠
=

1

𝑠
𝑝(𝑠 + 1) ≤

𝑟

𝑠
𝑝(𝑠 + 1) = 𝑏𝑝(𝑠 + 1). 

Now let 𝑎, 𝑏 ∈ ℝ0
+. We could come from the apprehension that there are positive rational 

numbers 𝑎1, 𝑎2, 𝑏1, 𝑏2 such that 𝑎1 < 𝑎 < 𝑎2, 𝑏1 < 𝑏 < 𝑏2. There is natural number 𝑛 with 
property 𝑎2 < 𝑏1𝑛 on the ground of the preliminary consideration. Then 𝑎 < 𝑏𝑛.  

  The known theorem from number theory about division with remainder is accordingly the 
corollary of the assertions A and B: 

Let 𝑎 ∈ ℕ0 and 𝑏 ∈ ℕ. There are unique numbers 𝑞, 𝑟 ∈ ℕ0 such that  

𝑎 = 𝑏𝑞 + 𝑟,  0 ≤ 𝑟 < 𝑏. 

We outline the proof with the utilization of the theorem A, B. The set  𝑀 = {𝑛 ∈ ℕ; 𝑎 < 𝑏𝑛} 
is non-empty subset of the set ℕ on the ground of B.  The set 𝑀 has the smallest element 𝑢 
pursuant to A. Put 𝑞 = 𝑢 − 1 and  𝑟 = 𝑎 − 𝑏𝑞, so 𝑎 = 𝑏𝑞 + 𝑟. The following relationships  

𝑞𝑏 = (𝑢 − 1)𝑏 ≤ 𝑎 < 𝑏𝑢 

result from the inequality  𝑢 − 1 < 𝑢 and from the choice of 𝑢. 

Then we obtain that 

0 ≤ 𝑟 = 𝑎 − 𝑏𝑞 < 𝑏𝑢 − (𝑢 − 1)𝑏 = 𝑏. 

If  𝑎 = 𝑏𝑞𝑖 + 𝑟𝑖,  0 ≤ 𝑟𝑖 < 𝑏, 𝑖 = 1,2, then 𝑏|𝑞1 − 𝑞2| = |𝑟2 − 𝑟1|. It is possible only in the case 
that  𝑞1 = 𝑞2, 𝑟1 = 𝑟2, because |𝑟2 − 𝑟1| < 𝑏.  

If we apply the theorem about division with remainder repeatedly for 𝑏 > 1 so we obtain  

          𝑎 = 𝑏𝑞0 + 𝑎0,                     0 ≤ 𝑎0 < 𝑏 

          𝑞0 = 𝑏𝑞1 + 𝑎1,                   0 ≤ 𝑎1 < 𝑏 

                 ⋮ 

          𝑞𝑛−2 = 𝑏𝑞𝑛−1 + 𝑎𝑛−1,      0 ≤ 𝑎𝑛−1 < 𝑏 
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          𝑞𝑛−1 = 𝑏. 0 + 𝑎𝑛,              0 ≤ 𝑎𝑛 < 𝑏. 

The sequence nonnegative whole numbers 𝑞0, 𝑞1, … is decreasing apparently, so there is 
such  𝑛 ∈ ℕ that 𝑞𝑛 = 0. Then 

𝑎 = 𝑏𝑞0 + 𝑎0 = 𝑏2𝑞1 + 𝑏𝑎1 + 𝑎0 = ⋯ = 𝑏𝑛𝑎𝑛 + 𝑏𝑛−1𝑎𝑛−1 + ⋯ + 𝑏𝑎1 + 𝑎0. 

Instead 𝑎 = 𝑏𝑛𝑎𝑛 + 𝑏𝑛−1𝑎𝑛−1 + ⋯ + 𝑏𝑎1 + 𝑎0 we write briefly 𝑎 = (𝑎𝑛𝑎𝑛−1 … 𝑎1𝑎0)𝑏. We 
say also about number notation in the 𝑏-adic notation system.  

   The following assertion is further simple corollary of assertions A, B which is due in number 
notation: 

For every  𝑥 ∈ ℝ+ there is unique such 𝑚 ∈ ℕ0 that 

𝑚 ≤ 𝑥 < 𝑚 + 1. 

Actually if we put 𝑏 = 1 in Archimedean property then we obtain: 
for every 𝑥 ∈ ℝ+ there is such 𝑛 ∈ ℕ that 𝑥 < 𝑛. The set 𝑀1 = {𝑛 ∈ ℕ; 𝑥 < 𝑛} ⊆ ℕ has on 
the ground of A the smallest element u. Then 𝑢 − 1 ≤ 𝑥 < 𝑢. Put 𝑚 = 𝑢 − 1. The unicity of 
𝑚 is evident. 

The number 𝑚 is called whole part of real number 𝑥. We denote its by sign  [𝑥]. 

 It is needed to sense that for every number 𝑥 ∈ ℝ+ there is 𝑛 ∈ ℕ with the property 
1

𝑛
< 𝑥. 

It suffices to put pre 𝑎 =
1

𝑥
  a  𝑏 = 1 in the assertion B. 

   The notion of mathematical induction and the construction of a sequence by mathematical 
induction is last needed scope for real number notation in positional numeration system. 
   It is possible to advance on grammar school intuitively the fact that the set 𝑀 ⊆ ℕ satisfying 
the properties 

a) 1∈ 𝑀  and  b) 𝑛 ∈ 𝑀 ⇒ 𝑛 + 1 ∈ 𝑀 

equals to whole set ℕ:  

Let 𝑚 ∈ ℕ. We gain number 𝑚 from number 1 by means of addition ones after 𝑚 − 1 steps. 
The element 𝑚 belongs to set 𝑀 basically assumptions a) and b). Often this fact is approached 
by the medium of the dominoes effect metaphorically. 

The mathematical induction is used moreover on the construction of a sequence {𝑎𝑛}𝑛=1
∞  with 

required properties: 

It is framed first member 𝑎1. Moreover it is established how we design member 𝑎𝑛+1in 
general, if we have designed member 𝑎𝑛 (𝑛 ∈ ℕ). Then the set  𝑀 = {𝑛 ∈ ℕ; 𝑎𝑛 is designed} 
satisfies the properties a), b). Then 𝑀 = ℕ and thus it is designed each member the 
sequence {𝑎𝑛}𝑛=1

∞ . 

2 Decimal expansion of real numbers 

Now we can introduce the final theorem about notation of nonnegative real number in the 
decimal numeration system. We do it on the ground of the results of the part 1. We utilize 
nevertheless admittedly besides the notation of nonnegative integers. It is possible to carry 
the proof of first theorem about the existence of an expansion of real number on grammar 
school. The second theorem about unicity of this expansion appertains on college or grammar 
school with advanced school teaching of mathematics. 
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 Theorem 1. For every nonnegative real number 𝑎 there are 𝑎0 ∈ ℕ0 and such infinite 
sequence of numbers 𝑎1, 𝑎2, … , 𝑎𝑛, …, where 𝑎𝑛 ∈ {0,1, … ,9}, 𝑛 = 1,2, … , that the following 
inequalities  

0 ≤ 𝑎 − (𝑎0 +
𝑎1

10
+

𝑎2

102
+ ⋯ +

𝑎𝑛

10𝑛
) <

1

10𝑛
 

are valid for any 𝑛 ∈ ℕ0. 
The inequality 𝑎𝑛 < 9 is true for infinite number of 𝑛,𝑠 additionally. 

Proof. Let  𝑎 ∈ ℝ0
+. Put  𝑎0 = [𝑎], 𝑏1 = 𝑎 − 𝑎0. Then  

𝑎 = 𝑎0 + 𝑏1, 𝑎0 ∈ ℕ0, 0 ≤ 𝑏1 < 1. 

Denote 𝑎1 = [10𝑏1], 𝑏2 = 10𝑏1 − 𝑎1. Then 

𝑏1 =
𝑎1

10
+

𝑏2

10
, 0 ≤ 𝑏2 < 1, 0 ≤ 10𝑏1 < 10. 

Thus 𝑎1 ∈ {0,1, … ,9}, 𝑎 = 𝑎0 +
𝑎1

10
+

𝑏2

10
. If we designed numbers 𝑎0, 𝑎1, … , 𝑎𝑛−1 and numbers 

𝑏1, 𝑏2, … , 𝑏𝑛 then we put 𝑎𝑛 = [10𝑏𝑛], 𝑏𝑛+1 = 10𝑏𝑛 − 𝑎𝑛. Then relations  

(1) 𝑎 = 𝑎0 +
𝑎1

10
+

𝑎2

102 + ⋯ +
𝑎𝑛

10𝑛 +
𝑏𝑛+1

10𝑛 , 0 ≤ 𝑏𝑛+1 < 1 

are true. By the mathematical induction we devised the sequence of numbers  𝑎1, 𝑎2, … , 𝑎𝑛, … 
(besides the sequence 𝑏1, 𝑏2, … , 𝑏𝑛, … )  with required properties. The inequalities  

0 ≤ 𝑎 − (𝑎0 +
𝑎1

10
+

𝑎2

102
+ ⋯ +

𝑎𝑛

10𝑛
) =

𝑏𝑛+1

10𝑛
<

1

10𝑛
 

are valid also.  

   Now we prove that inequality 𝑎𝑛 < 9 is valid for infinite amount natural numbers 𝑛. We 
shall proceed indirectly. Let 𝑚 be such natural number that  𝑎𝑘 = 9 for any 𝑘 > 𝑚. There is 

such 𝑙 ∈ ℕ that 1 − 𝑏𝑛+1 >
1

𝑙
. Evidently  

1

𝑙
>

1

10𝑙. Hence we obtain 

   (2)                                 
bm+1

10𝑚+1 <
1

10𝑚 (1 −
1

10𝑙) =
9

10𝑚+1 +
9

10𝑚+2 + ⋯
9

10𝑚+𝑙. 

Then from valid attitudes  

𝑎0 +
𝑎1

10
+

𝑎2

102
+ ⋯ +

𝑎𝑚

10𝑚
+

9

10𝑚+1
+

9

10𝑚+2
+ ⋯

9

10𝑚+𝑙
≤ 𝑥 = 

𝑎0 +
𝑎1

10
+

𝑎2

102
+ ⋯ +

𝑎𝑚

10𝑚
+

𝑏𝑚+1

10𝑚+1
 

we receive the opposite inequality to  inequality (1). It is misunderstanding. 

Theorem 2. Each nonnegative real number 𝑎 can be uniquely expressed in the form 

   (3)                                             𝑎 = 𝑎0 + ∑
𝑎𝑛

10𝑛
∞
𝑛=1 , 

where 𝑎0 ∈ ℕ0, 𝑎𝑛 ∈ {0,1, … ,9}, 𝑛 = 1,2, … , and for infinite number 𝑛,𝑠 we have 𝑎𝑛 < 9. 

Proof. We utilize the equality (1) and the designed sequences {𝑎𝑛}𝑛=0
∞ , {𝑏𝑛}𝑛=1

∞  in the theorem 
1   with given properties. Denote 

𝑠𝑛 = 𝑎0 +
𝑎1

10
+

𝑎2

102
+ ⋯ +

𝑎𝑛

10𝑛
, 𝑛 ∈ ℕ. 
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Then lim
𝑛→∞

(𝑎 − 𝑠𝑛) = 0 because 0 ≤ 𝑎 − 𝑠𝑛 =
𝑏𝑛+1

10𝑛 <
1

10𝑛 . Hence we have lim
𝑛→∞

𝑠𝑛 = 𝑎. The 

equality (3) emerges from the definition sum of infinite series. It is necessary to prove the 
unicity of the expression (3). Let be valid also the equality 

𝑎 = 𝑎0
, + ∑

𝑎𝑛
,

10𝑛
∞
𝑛=1 , 𝑎0

, ∈ ℕ0, 𝑎𝑛
, ∈ {0,1, … ,9}, 𝑛 = 1,2, …, 

and let for infinite number 𝑛,𝑠 be valid 𝑎𝑛
, < 9.  Then 

0 ≤ 𝑐 = ∑
𝑎𝑛

10𝑛
∞
𝑛=1 < 1, 0 ≤ 𝑐 , = ∑

𝑎𝑛
,

10𝑛
∞
𝑛=1 < 1, 

|𝑎0 − 𝑎0
, | = |𝑐 − 𝑐 ,| < 1. 

Number |𝑎0 − 𝑎0
, | is whole and nonnegative. Thus |𝑎0 − 𝑎0

, | = 0 and 𝑎0 = 𝑎0
, . Then following 

equalities are valid:  

𝑐 = 𝑐 ,, 𝑎1 +
𝑎2

10
+ ⋯ +

𝑎𝑛

10𝑛−1 + ⋯ = 10𝑐 = 10𝑐 , = 𝑎1
, +

𝑎2
,

10
+ ⋯ +

𝑎𝑛
,

10𝑛−1 + ⋯. 

We can receive equality  𝑎1 = 𝑎1
,  by similar consideration as for 𝑎0, 𝑎0

, . It can be already 
proved that 𝑎𝑛 = 𝑎𝑛

,  for any 𝑛 ∈ ℕ0 by the mathematical induction. We inscribe the equality 
(3) in form 

   (4)                                                            𝑎 = 𝑎0, 𝑎1𝑎2 … 𝑎𝑛 ⋯, 

whereby integer 𝑎0 is expressed in decimal numeration system. 

The equality (4) means in fact that it is needed to add to nonnegative integer 𝑎0 sum of  infinite 

numerical series ∑
𝑎𝑛

10𝑛
∞
𝑛=1 . The right side of the equality (4) is numeration of nonnegative real 

number 𝑎 in the decimal positional system. It is called also the decimal (decadic) expansion of 
the number 𝑎. The numbers 𝑎𝑛 (𝑛 = 1,2, … ) are called decimal  (decadic) numeral (figure, 
digit).  

   If is the decimal expansion of a number 𝑎 periodic accordingly 

𝑎 = 𝑎0, 𝑐1𝑐2 … 𝑐𝑝𝑑1𝑑2 … 𝑑𝑘 … 𝑑1𝑑2 … 𝑑𝑘 …, 𝑐𝑖, 𝑑𝑗 ∈ {0,1, … ,9}, 𝑖 = 1, … 𝑝, 𝑗 = 1, … , 𝑘, 

we obtain 

𝑎 = 𝑎0 +
𝑐1

10
+

𝑐2

102
+ ⋯

𝑐𝑘

10𝑘
+

𝑢

10𝑝
+

𝑢

10𝑝+𝑘
+ ⋯ = 

𝑎0 +
𝑐1

10
+

𝑐2

102
+ ⋯

𝑐𝑘

10𝑘
+

𝑢

10𝑝

1

1−
1

10𝑘

= 𝑎0 +
𝑐1

10
+

𝑐2

102
+ ⋯

𝑐𝑘

10𝑘
+ 𝑢

10𝑘−𝑝

10𝑘−1
. 

where 𝑢 =
𝑑1

10
+

𝑑2

102
+ ⋯

𝑑𝑘

10𝑘
.  

We proved so that  if the decimal expansion of a number 𝑎 is periodic then this number 𝑎 is 
rational.  

   It is valid also the inverted implication. Let 𝑎 =
𝑝

𝑞
, 𝑝, 𝑞 ∈ ℕ. If we divide number 𝑝 with 

number 𝑞 then we can obtain partial remainders just from the set {0,1, … , 𝑞 − 1}. It is possible 
only two cases:  
we obtain the remainder 0 past finite number steps or  
a certain grouping of nonzero remainders is still repeated.  
The number 𝑎 is rational in both cases. 
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Conclusion 

It is manipulated directly with decimal expansion of rational numbers only on the grammar 
school. We outlined possibilities approach of decimal expansion of real numbers on grammar 
school in the contribution. We integrated theorem 2 into schooling on college by reason of 
employment of the limiting process for sequences. On the other hand it makes merely use of 
convergent geometric series. The geometric series belong on grammar school.  
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