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Abstract 

Problem posing is mostly applied during a lesson in such way, that the teacher prepares a material, situation or 

a problem and the students pose some new problems and solve them. It is possible to use problem posing 

outside of the classroom. We want to show that problem posing can be successfully used for developing and 

designing new tasks and problems for mathematics teaching and learning. We describe the What-If-Not 

strategy of problem posing and give an example of creating new problems using this strategy. We also solve 

some of the newly created problems. 
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Introduction 

The tasks teachers pose in their classrooms deserve important consideration because they 
open or close the students’ opportunity for meaningful mathematics learning. They convey 
implicit messages about the nature of mathematics: what it is, what it entails, and what is 
worth knowing and doing in mathematics (Crespo, 2003). This is a responsibility not only of 
the teachers but also authors of textbooks and task designers, because teachers pose 
problems that come from textbooks or other literature. Now a question arises, where do the 
problems in a textbook come from? In most cases, they are a product of a creative thinking 
of the authors or anyone, who prepares a new problems for teaching and learning. We 
assume that adopting principles and strategies of problem posing can help them in 
generating original problems. 

Problem-posing 

Problem posing involves generating of new problems and questions aimed at exploring a 
given situation as well as the reformulation of a problem during the process of solving it 
(Silver, 1994). In the first case, problem posing is a divergent task that has multiple possible 
answers (posed problems). Therefore, problem posing is considered to be a creative 
generation task that requires productive thinking. To promote diverse and flexible thinking, 
it is critical for learners to generate diverse problems. However, it has been confirmed that 
problems generated by novice learners lack diversity (Kojima & Miwa, 2008). Advocates for 
problem posing typically argue that experience with mathematical problem posing can 
promote students’ engagement in authentic mathematical activity; allow them to encounter 
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many problems, methods and solutions, and promote students’ creativity – a disposition to 
look for new problems, alternate methods, and novel solutions (Singer et al, 2011). 

A systematic training focused on problem transposition using various representations, 
problem extension by adding new operations or conditions, comparison of various problems 
in order to assess similarities and differences, or analysis of incomplete or redundant 
problems can raise students’ awareness of meaningful problems (Singer et al, 2011). 
Effective teaching should focus on representational change, within a variety of activities, 
which specifically address students’ motor, visual, and verbal skills, as well as transfers in 
between them (Singer et al, 2011). In problem-posing contexts, students are stimulated to 
make observations, experiment through varying some data and analyzing the results, and 
devise their own new problems that could be solved by equally using similar or different 
patterns. The processes by which students continue given series or patterns provide 
information about the cognitive approaches they use in problem solving (Singer, Voica, 
2008)  

If problem posing is such an important intellectual activity, the first question we need to ask 
is who can pose mathematical problems. One important line of research in problem posing 
has been exploring what problems teachers and students can pose (Singer et al, 2011). The 
process of posing problems in this line proceeds during a mathematics lesson, where a 
problem situation is given and students are asked to pose new problems. The process of 
problem posing can be also used out of the lesson by teachers, authors of textbooks or task 
designers.  

What-If-Not strategy 

The What-If-Not (WIN) strategy was introduced by Brown and Walter (2005). It is based on 
the idea that modifying the attributes of a given problem could yield new and intriguing 
problems which eventually may result in some interesting investigations. The strategy cen be 
described in following stages: 

Level 0 – Choosing a Starting Point: As a starting point for problem posing can be used a 
concrete material, existing problem or a theorem. 

Level 1 – Listing Attributes: Look at what is given and find the important attributes of the 
starting point. 

Level 2 – What-If-Not-ing: Choose one or more attributes from the list and ask “What if not 
this attribute?” and list some alternatives for this attribute. 

Level 3 – Question Asking or Problem Posing: Choose an alternative to the attribute and 
pose a question or problem. 

Level 4 – Analyzing the Problem: Analyzing and trying to answer the question gives us a 
deeper insight into the problem. 

The process of the WIN strategy seems to be linear, but it is cyclical in fact. Brown and 
Walter (2005) explain: “Our scheme, however, is not as linear as it may seem from this list. 
Almost every part can (and does) affect others. A new question may trigger a new attribute, 
and a new attribute may in turn trigger a new question (for example). This in turn may 
enable you to see the original phenomenon in a new light.” 
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Using problem-posing for task design  

Many projects or final thesis at universities have a similar objective, to create a collection of 
new task for a certain part of mathematics or a specific type of tasks. Strategies of problem-
posing can be used to fulfil this objective. Authors often unwittingly and intuitively use the 
WIN strategy to create new tasks. We suggest that intentional usage of problem-posing 
strategies can increase quantity and quality of designed tasks. 

Now we show how to develop new problems using the WIN strategy. As a starting point we 
choose a problem we found in (Kopka, 2010). In the following problems, we call a square 
with a side of length k a square of size 𝑘 × 𝑘 and similarly a rectangle of size 𝑘 × 𝑙 is a 
rectangle with sides of length k and l. An equilateral triangle with the side of length k is 
called a triangle of size k.  

Problem: Determine the number of all squares in a square grid of size 𝑛 × 𝑛, where n is a 
natural number other then 0. (Kopka, 2010, p.124) 

Now we need to create a list of attributes of this problem. In other word we can describe the 
situation that we have a square with side of length n divided into squares with side of length 
1 and we want to know the number of all squares in the grid.  In the previous sentence we 
underlined the most important attributes of the problem. Now we can start what-if-not-ing. 
We write down some possible alternatives for each attribute: 

Square of size 𝑛 × 𝑛 – triangle of size n, rectangle of size 𝑚 × 𝑛, square of size 𝑛 × 𝑛 with a 
missing square in a corner(s). 

Squares of size 1 × 1- triangles of size 1, squares of different sizes and their combination. 

Number of all squares – number of squares of certain size, number of all triangles, number 
of all rectangles. 

Choosing some of the alternatives we can pose the following problems: 

Problem 1: Count the number of all triangles in a triangular grid of size n. 

Problem 2: Count the number of all rectangles in a square grid of size 𝑚 × 𝑛. 

Problem 3: Count the number of all squares in a square grid of size 𝑛 × 𝑛 divided into one 
square of size 2 × 2 and squares of size 1 × 1 (see Figure 1, left). 

Problem 4: Count the number of all squares in a square grid of size 𝑛 × 𝑛 divided into one 
square of size 2 × 2 and squares of size 1 × 1, where the square of size 2 × 2 is placed 
arbitrarly in the grid.. 

Problem 5. Count the number of all squares in a square grid of size 𝑛 × 𝑛 with one square 
missing in the up-left corner (see Figure 1, right). 

 
Figure 1 
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It is possible to pose even more new problems by varying the attributes of the original 
problem. Of course replacing one attribute may lead to a trivial problem so it needs to also 
replace another attribute too. For example if we replace the number of all squares by 
triangles, the new problem has no solution.  

We assume that the stated problems fully present the potential of WIN strategy for 
generating new problems. As a last step of the WIN strategy, we analyse and solve four of 
these problems. In the solutions, we use the following well known identities for finite sums. 

∑ 𝑘

𝑛

𝑘=1

=
1

2
𝑛(𝑛 + 1), ∑ 𝑘2

𝑛

𝑘=1

=
1

6
𝑛(𝑛 + 1)(2𝑛 + 1), ∑ 𝑘(𝑘 + 1)

𝑛

𝑘=1

=
1

3
𝑛(𝑛 + 1)(𝑛 + 2). 

Problem 1: Count the number of all triangles in a triangular grid of size n. 

Solution: In such a triangle there are triangles of different sizes and some are rotated about 
180 degrees. We will try to count all these types of triangles separately. First we focus on the 
triangles in the basic position. We start with triangles of size 1. We can notice that in the first 
row there is only 1 such triangle. In the second row there are 2. In the i-th row there are I 
triangles of size 1. So the number of triangles of size 1 is 1 + 2 + 3 + ⋯ + 𝑛, which we 
denote by 𝑇𝑛, the triangular number. Now we will count the triangles of size 2, by moving 
the triangle in all the possible positions. We will track the position of the upper triangle of 
size 1 in the triangle of size 2 (see Figure 2). The tracked triangle occupies the positions of  a 
triangle of size 1 in the first 𝑛 − 1 rows. Therefore the number of triangles of size 2 is 𝑇𝑛−1. 
This idea can be generalized for any triangle of size I giving the result 𝑇𝑛−𝑖+1. 

 
Figure 2 

Now we will focus on the rotated triangles. First of all we need to realize that not all sizes are 

possible for the rotated triangles. The side of a rotated triangle cannot be longer then 
𝑛

2
.  If n 

is odd the largest size is equal to 
𝑛−1

2
, for even n it is 

𝑛

2
. We can write it jointly ⌊

𝑛

2
⌋. Now we 

can count the triangles similarly as in the case of triangles in the basic position. The number 
of triangles of size 1 is in row I equal to 𝑖 − 1. So summing it up gives 𝑇𝑛−1. For triangles of 
size 2 we will track the position of the triangle of size 1 in the basic position in the middle. It 
is obvious that the tracked triangle will not occupy any position in the first two rows and in 
the last row. All the possible positions of the tracked triangle are the triangles of size 1 in the 
basic position in a triangle of size 𝑛 − 3. The number of rotated triangles of size 2 is equal 
𝑇𝑛−3. We can generalize this for triangles of size i, where I is a natural number satisfying 

inequality 1 ≤ 𝑖 ≤ ⌊
𝑛

2
⌋.  
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Figure 3 

We summarize our findings in Table 1.  

Table 1 

Size 1 2 3 4 … 𝑛 − 1 𝑛 

Position 
Basic 𝑇𝑛 𝑇𝑛−1 𝑇𝑛−2 𝑇𝑛−3 … 𝑇2 𝑇1 

Rotated 𝑇𝑛−1 𝑇𝑛−3 𝑇𝑛−5 𝑇𝑛−7 … 0 0 

 

We want to derive an explicit formula for counting the number of triangles. First we count 

the number of triangles in the basic position. We know that 𝑇𝑛 =
1

2
𝑛(𝑛 + 1). Then 

∑ 𝑇𝑘 = ∑
𝑘(𝑘 + 1)

2
=

1

2
∑ 𝑘(𝑘 + 1)

𝑛

𝑘=1

𝑛

𝑘=1

𝑛

𝑘=1

=
1

6
𝑛(𝑛 + 1)(𝑛 + 2). 

We need to distinguish two cases for counting the rotated triangles. If n is even, we sum up 
triangular numbers with odd index.  

∑ 𝑇2𝑘−1

𝑛

𝑘=1

= ∑
2𝑘(2𝑘 − 1)

2

𝑛

𝑘=1

= ∑ 𝑘(2𝑘 − 1)

𝑛

𝑘=1

= 2 ∑ 𝑘2

𝑛

𝑘=1

− ∑ 𝑘 =

𝑛

𝑘=1

 

 

=
1

3
𝑛(𝑛 + 1)(2𝑛 + 1) −

1

2
𝑛(𝑛 + 1) =

1

6
𝑛(𝑛 + 1)(4𝑛 − 1). 

 

If n is odd, we sum up triangular numbers with even index. 

∑ 𝑇2𝑘

𝑛

𝑘=1

= ∑
2𝑘(2𝑘 + 1)

2

𝑛

𝑘=1

= ∑ 𝑘(2𝑘 + 1)

𝑛

𝑘=1

= 2 ∑ 𝑘2

𝑛

𝑘=1

+ ∑ 𝑘 =

𝑛

𝑘=1

 

 

=
1

3
𝑛(𝑛 + 1)(2𝑛 + 1) +

1

2
𝑛(𝑛 + 1) =

1

6
𝑛(𝑛 + 1)(4𝑛 + 5). 
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We denote by 𝑡(𝑛) the number of all triangles in the triangular grid of size n. For n even we 
have: 

𝑡(𝑛) = ∑ 𝑇𝑘

𝑛

𝑘=1

+ ∑ 𝑇2𝑘−1

𝑛/2

𝑘=1

=
1

6
𝑛(𝑛 + 1)(𝑛 + 2) +

1

6

𝑛

2
(

𝑛

2
+ 1) (4

𝑛

2
− 1) =

=
1

8
𝑛(𝑛 + 2)(2𝑛 + 1). 

For n odd we have: 

𝑡(𝑛) = ∑ 𝑇𝑘

𝑛

𝑘=1

+ ∑ 𝑇2𝑘

(𝑛−1)/2

𝑘=1

=
1

6
𝑛(𝑛 + 1)(𝑛 + 2) +

1

6

𝑛 − 1

2
(

𝑛 − 1

2
+ 1) (4

𝑛 − 1

2
+ 5) =

=
1

8
(𝑛 + 1)(2𝑛2 + 3𝑛 − 1). 

For example we can count 𝑡(4) and 𝑡(5).  

𝑡(4) =
1

8
4.6.9 = 27, 𝑡(5) =

1

8
6.64 = 48. 

Problem 2: Count the number of all rectangles in a square grid of size 𝑚 × 𝑛. 

Solution: We can find rectangles of different sizes in the rectangle. Some of them are 
squares. We will distinguish between rectangles of size 𝑎 × 𝑏 and 𝑏 × 𝑎. If we have 
a rectangle of size 𝑎 × 𝑏, where 1 ≤ 𝑎 ≤ 𝑚 and 1 ≤ 𝑏 ≤ 𝑛, we can place it in the rectangle 
in such way that their top left corners merge into one. This is one possible way of placing the 
rectangle of 𝑎 × 𝑏. Now we can move it to the right side into one of the 𝑚 − 𝑎 positions. 
This gives us 𝑚 − 𝑎 + 1 positions in the horizontal line. Similarly we can move the rectangle 
in the vertical line. There we obtain 𝑛 − 𝑏 + 1 positions. The number of positions of the 
rectangle of size 𝑎 × 𝑏 in a rectangle of size 𝑚 × 𝑛 is (𝑚 − 𝑎 + 1)(𝑛 − 𝑏 + 1). Now we put 
together a table in which each cell contains the number of rectangles of size 𝑎 × 𝑏 (see Table 
2). The last column contains sums of rows. 

Table 2 

Size 1 2 … 𝑚 − 1 𝑚 Sum 

1 𝑚𝑛 (𝑚 − 1)𝑛 … 2𝑛 𝑛 𝑛(1 + 2 + ⋯ + 𝑚) 

2 𝑚(𝑛 − 1) (𝑚 − 1)(𝑛 − 1) … 2(𝑛 − 1) 𝑛 − 1 (𝑛 − 1)(1 + 2 + ⋯ + 𝑚) 

⋮ ⋮ ⋮  ⋮ ⋮ ⋮ 

𝑛 − 1 2𝑚 2(𝑚 − 1) … 4 2 2(1 + 2 + ⋯ + 𝑚) 

𝑛 𝑚 (𝑚 − 1) … 2 1 (1 + 2 + ⋯ + 𝑚) 

 

We denote by 𝑟(𝑚, 𝑛) the number of all rectangles. We need to sum up all the expressions 
in the last column of Table 2. 

𝑟(𝑚, 𝑛) = 𝑚(1 + 2 + ⋯ + 𝑛) + (𝑚 − 1)(1 + 2 + ⋯ + 𝑛) + ⋯ + (1 + 2 + ⋯ + 𝑛) = 
= (1 + 2 + ⋯ + 𝑚)(1 + 2 + ⋯ + 𝑛). 

We can also derive a recurrence for 𝑟(𝑚, 𝑛). If we take a look on Table 3, we can see that it 
contains same expressions as Table 2 except the first row and first column.  
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We can write: 

𝑟(𝑚 + 1, 𝑛 + 1) = 𝑟(𝑚, 𝑛) + (𝑛 + 1)(1 + 2+. . . +(𝑚 + 1)) + (𝑚 + 1)(1 + 2 + ⋯ + 𝑛) = 

= 𝑟(𝑚, 𝑛) +
1

2
(𝑛 + 1)(𝑚 + 1)(𝑚 + 2) +

1

2
(𝑚 + 1)𝑛(𝑛 + 1) = 

= 𝑟(𝑚, 𝑛) +
1

2
(𝑚 + 1)(𝑛 + 1)(𝑚 + 𝑛 + 2). 

We need to determine 𝑟(1, 𝑛) and 𝑟(𝑚, 1). If we look into Table 2 from column m and row n 
we obtain: 

𝑟(𝑚, 1) = 1 + 2 + ⋯ + 𝑚 =
1

2
𝑚(𝑚 + 1). 

𝑟(1, 𝑛) = 1 + 2 + ⋯ + 𝑛 =
1

2
𝑛(𝑛 + 1). 

Table 3 

 1 2 3 … 𝑚 𝑚 + 1 

1 (𝑚 + 1)(𝑛 + 1) 𝑚(𝑛 + 1) (𝑚 − 1)(𝑛 + 1)  2(𝑛 + 1) (𝑛 + 1) 

2 (𝑚 + 1)𝑛 𝑚𝑛 (𝑚 − 1)𝑛 … 2𝑛 𝑛 

3 (𝑚 + 1)(𝑛 − 1) 𝑚(𝑛 − 1) (𝑚 − 1)(𝑛 − 1) … 2(𝑛 − 1) 𝑛 − 1 

⋮ ⋮ ⋮ ⋮  ⋮ ⋮ 

𝑛 2(𝑚 + 1) 2𝑚 2(𝑚 − 1) … 4 2 

𝑛 + 1 (𝑚 + 1) 𝑚 (𝑚 − 1) … 2 1 

 

For example we can count 𝑟(5,3). By the explicit formula we have: 

𝑟(5,3) = (1 + 2 + 3 + 4 + 5)(1 + 2 + 3) = 15.6 = 90. 

Using the recurrence we obtain: 

𝑟(5,3) = 𝑟(4,2) +
1

2
5.3.8 = 𝑟(3,1) +

1

2
4.2.6 + 60 = 6 + 24 + 60 = 90. 

Remark: If we choose 𝑚 = 𝑛, we have a similar problem of determining the number of 
rectangles in a square of size 𝑛 × 𝑛. Solution of this problem is the same, but the derived 
formulas have the form: 

𝑟(𝑛) = (1 + 2 + ⋯ + 𝑛)2 = ∑ 𝑖3

𝑛

𝑖=1

=
1

4
𝑛2(𝑛 + 1)2 

𝑟(𝑛 + 1) = 𝑟(𝑛) + (𝑛 + 1)3, 𝑟(1) = 1. 

In problems 3 and 5 we use the result of the original problem of counting the number of all 
squares in a square grid. We denote it by 𝑠(𝑛). It can be derived even from table 2 looking at 
the cells laying at the main diagonal and setting 𝑚 = 𝑛. We see that 𝑠(𝑛) = ∑ 𝑘2𝑛

𝑘=1 . 

Problem 3: Count the number of all squares in a square grid of size 𝑛 × 𝑛 divided into one 
square of size 2 × 2 and squares of size 1 × 1 (see Figure 1, left). 
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Solution: We will count, how many squares are missing in this kind of grid. There are missing 
4 squares of size 1 × 1. The square of size 𝑛 × 𝑛 is still in the grid. As for the squares of other 
sizes, there are always 3 missing squares of each size. Together it is 3𝑛 − 2 missing squares.  
If we denote 𝑠1(𝑛) the number of all squares in this kind of a square grid, then: 

𝑠1(𝑛) = 𝑠(𝑛) − (3𝑛 − 2) =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1) − (3𝑛 − 2) =

1

6
(𝑛 − 1)(𝑛 + 4)(2𝑛 − 3). 

Problem 5. Count the number of all squares in a square grid of size 𝑛 × 𝑛 with one square 
missing in the up-left corner (see Figure 1, right). 

Solution: We will count how many squares disappear by removing the square from the 
corner. All squares in a square grid that are placed in such way that they cover the removed 
square, do not appear in the grid any more. Number of these squares is exactly n, because 
there is only one square of each size that can be placed in a square grid in the described way. 
If we denote 𝑠2(𝑛) the number of squares in the square grid without a square in the corner, 
then:  

𝑠2(𝑛) = 𝑠(𝑛) − 𝑛 =
1

6
𝑛(𝑛 + 1)(2𝑛 + 1) − 𝑛 =

1

6
𝑛(𝑛 − 1)(2𝑛 + 5). 

Conclusion 

We think that problem posing and especially the WIN strategy can be a very useful for 
developing new original tasks and problem for mathematics teaching and learning. We 
showed an example of using the WIN strategy and formulated five new problems of which 
we solved four. We could pose more problems, but the stated problems fulfil our objective 
to point out a possible use of problem posing. 
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