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Abstract 

The paper deals with some aspects of the relationship between history of mathematics and mathematics 

education. Attention is paid to the importance of integrating elements of history of mathematics in preparation 

of prospective mathematics teachers. The emphasis is put on personal experience from teaching the university 

course history of mathematics for prospective teachers and implementation of elements of mathematics history 

in calculus courses for prospective mathematics teachers. We primarily focus on infinite series because this 

concept is mysterious and intriguing.  
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Introduction 

Mathematics in relation to historical periods can be viewed in two ways. On one hand we see 

it as a system of interconnected timeless eternal facts. In this respect mathematics does not 

know “outdated” knowledge, in contrast to other natural sciences. Mathematical argument 

which was once correctly proved (since then it is referred to as a mathematical theorem) never 

loses this value, although it can happen (and it also occurs in general) that the further 

development becomes a simple case of more general claim. It cannot, therefore, be surprising 

that the average person hardly thinks that mathematics has any history, rather, that all of it 

was revealed in a flash of moment to some ancient mathematical Muses. 

In this sense, it is important to show students that mathematics exists and evolves in time and 

space. We would like to show that it is a science that has undergone an evolution rather than 

something which arose out of thin air, and stress that human beings have taken part in this 

evolution and that the evolution of mathematics has been influenced by many different 

cultures throughout history and that these cultures have had an influence on the shaping of 

mathematics as well as the other way round. Mathematicians’ activity is focused on the 

discovery of these timeless facts and clarification of the deductive connection between them. 

In essence it is about evolutionary progress during which mathematics is becoming better and 

better. On the other hand, we can look at mathematics as a human activity taking place in the 

cultural time. This second view is not inconsistent with the first view, quite the opposite, 
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relevant knowledge effectively complements it by clarifying the logic of discoveries. This 

allows us to see that the activity with which mathematicians discover new knowledge has 

much in common with activity that teachers and students do when dealing with the revealed 

knowledge. Indeed, even in this activity in which teachers are trying to make sense of the 

learning process, there are elements of creativity and real discoveries. The traditional form of 

teaching mathematics does not use historical approach in learning. Thus, it is not surprising 

that at Slovak universities a one-semester course of history of mathematics for prospective 

mathematics teachers is included in the last year of their master study. The mathematics 

history lectures in the last year of prospective teacher preparation assumed that history of 

mathematics cannot enrich the comprehensive knowledge or skill in the subject of 

mathematics. However, the current mathematics is too abstract and completely separated 

from its historical roots that may support its understanding. This abstractness of mathematics 

is also transferred in mathematics education and makes mathematics learning even more 

difficult. Perhaps a way out of this situation can be to change the view on the relationship of 

mathematics and its history, and to start systematically investigate the origin and genesis of 

mathematical ideas, not only in the final course of the history of mathematics, but directly in 

key university mathematics courses (calculus, algebra, geometry). 

The role of mathematics history in mathematics teaching and learning 

In general mathematics is viewed as a collection of methods and problems. In our opinion 

reducing mathematics to this aspect is a distorted picture. Mathematics is much more: it is 

part of our culture, just as literature, music, philosophy, arts. The cultural aspect of these 

subjects has been underlined in school by teaching also their historical development. Over the 

years mathematicians, educators and historians have wondered whether mathematics 

learning and teaching might profit from integrating elements of history of mathematics. It is 

clear that mathematics education does not succeed to reach its aims for all students, and that 

it is therefore worthwhile to investigate whether history can help to improve the situation. 

The idea to use the history of mathematics in mathematics education is not new. The idea has 

already been explicitly described in the works of Heppel, 1893; Smith and Cajori, 1894; Loria 

1899; Zeuthen, 1902; Gebhardt, 1912. In 1902, Dutch mathematician H. G. Zeuthen (1839-

1920) published the History of Mathematics for teachers. Zeuthen argued that the history of 

mathematics should be part of general teachers’ education. Since then, math teachers 

increasingly use the history of mathematics in their curricula, and the spectrum of its use has 

spread. Since 1960, research in this area has founded the scientific basis. What is now called 

“HPM” sprang from a Working Group established at the second International Congress on 

Mathematical Education (ICME), held in Exeter, UK, in 1972. The “principal aims” of the Study 

Group were proposed as follows: 

1. To promote international contacts and exchange information concerning: a) Courses in History of Mathematics 

in Universities, Colleges and Schools. b) The use and relevance of History of Mathematics in mathematics 

teaching. c) Views on the relation between History of Mathematics and Mathematical Education at all levels. 2. 

To promote and stimulate interdisciplinary investigation by bringing together all those interested, particularly 

mathematicians, historians of mathematics, teachers, social scientists and other users of mathematics. 3. To 

further and deeper understanding of the way mathematics evolves, and the forces which contribute to this 

evolution. 4. To relate the teaching of mathematics and the history of mathematics teaching to the development 

of mathematics in ways which assist the improvement of instruction and the development of curricula. 5. To 
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produce materials which can be used by teachers of mathematics to provide perspectives and to further the 

critical discussion of the teaching of mathematics. 6. To facilitate access to materials in the history of 

mathematics and related areas. 7. To promote awareness of the relevance of the history of mathematics for 

mathematics teaching in mathematicians and teachers. 8. To promote awareness of the history of mathematics 

as a significant part of the development of cultures. 

Educators throughout the world have been formulating and conducting research on the 

use of history of mathematics in mathematics education.  In the last three or four decades 

there has been a movement towards inclusion of more humanistic elements in the teaching 

of mathematics. This has been the case of Slovakia, in particular the Slovak upper secondary 

schools, as well as internationally. The various ‘humanistic’ elements embrace, among others, 

cultural, sociological, philosophical, application-oriented, and historical perspectives on 

mathematics as an educational discipline*. Only recently there has been a stronger call for 

methodological and theoretical foundations for the role of history in mathematics education. 

The report History in Mathematics Education: The ICMI† Study (Fauvel & Van Maanen, 2000) 

has made a valuable contribution in this respect by collecting theories, results, experiences 

and ideas of implementing history in mathematics education from around the world. Students 

can experience the subject as a human activity, discovered, invented, changed and extended 

under the influence of people over time. Instead of seeing mathematics as a ready-made 

product, they can see that mathematics is a continuously changing and growing body of 

knowledge to which they can contribute themselves. Learners could acquire a notion of 

processes and progress and learn about social and cultural influences. Moreover, history 

accentuates the links between mathematical topics and the role of mathematics in other 

disciplines, which would help place mathematics in a broader perspective and thus deepen 

students’ understanding. History of mathematics may play an especially important role in the 

training of future teachers, and also teachers undergoing in-service training. There are several 

reasons for including a historical component in such training, including the promotion of 

enthusiasm for mathematics, enabling trainees to see pupils differently, to see mathematics 

differently, and to develop skills of reading, library use and expository writing which can be 

neglected in mathematics courses. It may be useful here to distinguish the training needs for 

primary, secondary and higher levels. (ICMI Study on The role of the history of mathematics in 

the teaching and learning of mathematics, Discussion Document). History of mathematics 

provides opportunities for getting a better view of what mathematics is. When a teacher’s 

own perception and understanding of mathematics changes, it affects the way mathematics 

is taught and consequently the way students perceive it. Teachers may find that information 

on the development of a mathematical topic makes it easier to explain or give an example to 

students. Jankvist (2009) in his PhD thesis states that in general the arguments for using 

history are of two different kinds: those that refer to history as a tool for assisting the learning 

and teaching of mathematics, and those that refer to history as a goal. Each of these two kinds 

constitutes its own category of arguments. The category of history-as-a-tool arguments 

                                                           
*Note that in the case of Slovakia, this is a little bitter undertone, as efforts to humanize the teaching of 
mathematics, together with efforts to improve the performance of pupils Slovak testing OECD PISA in 2008 
resulted in the reform of educational curriculum, which, though committed to the above mentioned objectives, 
significantly reduced the number of lessons in individual grades of mathematics education, thus, the initial idea 
was lost. 
†ICMI = International Commission on Mathematical Instruction 
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contains the arguments concerning how students learn mathematics. A typical argument is 

that history can be a motivating factor for students in their learning and study of mathematics, 

for instance, helping to sustain the students’ interest and excitement in the subject. Or, that 

an historical approach may give mathematics a more human face and therefore make it less 

frightening. Often pieces of the mathematical development over which past mathematicians 

have stumbled are also troublesome for nowadays students of mathematics. Students may 

derive comfort from knowing that the same mathematical concept which they themselves are 

now having trouble grasping actually took great mathematicians hundreds of years to shape 

into its final form. Besides having these motivational and more affective effects, history may 

also play the role of a cognitive tool in supporting the mathematics learning itself. For instance, 

one argument states that history can improve learning and teaching by providing a different 

point of view or mode of presentation. Other arguments say that historical phenomenology 

may prepare the development of a hypothetical learning trajectory, or that history “can help 

us look through the eyes of the students”.  In the context of using history to study learning 

processes we mention the so-called Biogenetic Law popular at the beginning of the 20th 

century. German biologist and natural philosopher E. Haeckel in 1874 formulated his theory 

as "Ontogeny recapitulates phylogeny”. The notion later became simply known as the 

recapitulation theory. Ontogeny is the growth (size change) and development (shape change) 

of an individual organism; phylogeny is the evolutionary history of a species. Haeckel claimed 

that the development of advanced species passes through stages represented by adult 

organisms of more primitive species. In other words, each successive stage in the 

development of an individual represents one of the adult forms that appeared in its 

evolutionary history. Although Haeckel's specific form of recapitulation theory is now 

discredited among biologists, the strong influence it had on social and educational theories of 

the late 19th century still resonates in the 21st century. Haeckel developed this thought even 

further saying that “the psychic development of a child is a brief repetition of the phylogenetic 

evolution”. And it is this argument that translates into the recapitulation argument which may 

be formulated as: To really learn and master mathematics, one’s mind must go through the 

same stages that mathematics has gone through during its evolution. The Biogenetic Law 

states that mathematical learning in the individual (ontogenesis) follows the same course as 

the historical development of mathematics itself (phylogenesis). Developmental psychologist 

Jean Piaget (1896 – 1980) favoured a softer version of the formula, according to which 

ontogeny parallels phylogeny because the two are subject to similar external constraints. 

However, it has become more and more clear since then that such a strong statement cannot 

be sustained. 

The plenary lecture given to the Congress (ICME 4, Berkeley 1980) by the distinguished 

Dutch mathematics educator Hans Freudenthal (1905 – 1990) valuably included his succinct 

views on the “ontogeny recapitulates phylogeny” debate which has long been a concern to 

those in HPM circles: 

http://en.wikipedia.org/wiki/Ontogeny
http://en.wikipedia.org/wiki/Phylogenetics
http://en.wikipedia.org/wiki/Evolution
http://en.wikipedia.org/wiki/Jean_Piaget
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Figure 1: Jean Piaget (1896 – 1980) Figure 2: Hans Freudenthal (1905 -1990) 

“History of mathematics has been a learning process of progressive schematizing. 

Youngsters need not repeat the history of mankind but they should not be expected either to 

start at the very point where the preceding generation stopped. In a sense youngsters should 

repeat history though not the one that actually took place but the one that would have taken 

place if our ancestors had known what we are fortunate enough to know.”(Freudenthal, 1980). 

A short study of mathematical history is sufficient to conclude that its development is not as 

consistent as this law would require. Freudenthal explains what he understands by “guided 

reinvention”: “Urging that ideas are taught genetically does not mean that they should be 

presented in the order in which they arose, not even with all the deadlocks closed and all the 

detours cut out. What the blind invented and discovered, the sighted afterwards can tell how 

it should have been discovered if there had been teachers who had known what we know now. 

(...) It is not the historical footprints of the inventor we should follow but an improved and 

better guided course of history.”(Freudenthal, 1973).  

The recapitulation argument not only applies to mathematics as a whole, but also to single 

mathematical concepts and theories. And it is often in relation to the development of single 

mathematical concepts that another tool argument related to the evolutionary kind, the so-

called historical parallelism, is put to the “test” – historical parallelism concerns the 

observation of difficulties and obstacles that occurred in history reappearing in the classroom. 

The idea of parallelism may also be used as a methodology or heuristic to generate hypotheses 

in mathematics education (e.g. Fauvel &van Maanen, 2000, p. 160;).  The German 

mathematician Otto Toeplitz* (1881-1940) proposed and distinguished between the “Direct 

Genetic Method” and the “Indirect Genetic Method”. The “Indirect Genetic Method” means 

that the teacher can learn from the history about difficulties which were encountered even 

by the great mathematicians such as Newton, Leibniz, Fermat, Cavalieri and others and to take 

this into account in his planning of the teaching process without mentioning historical details. 

                                                           
* In 1949 (in German) and 1963 (in English) his textbook The Calculus A genetic approach was published 
posthumously. This book presented a radically different approach to the teaching of calculus.  In sharp contrast 
to the methods of his time, Otto Toeplitz did not teach calculus as a static system of techniques and facts to be 
memorized. Instead, he drew on his knowledge of the history of mathematics and presented calculus as an 
organic evolution of ideas beginning with the discoveries of Greek scholars, such as Archimedes, Pythagoras, and 
Euclid, and developing through the centuries in the work of Kepler, Galileo, Fermat, Newton, and Leibniz. Through 
this unique approach, Toeplitz summarized and elucidated the major mathematical advances that contributed 
to modern calculus. 
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The historical development only acts as a guideline. It shows the teacher (or the textbook 

author) the crucial way forward: namely, that those aspects of a concept which historically 

have been recognised and used before others are probably more appropriate for the 

beginning of teaching than modern deductive reformulations. The genetic method that is 

going back to the roots of the concepts can offer a way beyond the dilemma of rigour versus 

intuition in teaching. In contrary to this the “Direct Genetic Method” proposes in addition to 

offer historical details as well (often only a few  sentences or a single historical  problem) 

explicitly in the teaching  at suitable occasions (Kronfellner, 2000). Schubring (1978), in his 

extensive study hereof, distinguishes between two genetic principles: (1) the historical-

genetic principle, which aims at leading students from basic to complex knowledge in the 

same way that mankind has progressed in the history of mathematics, and (2) the 

psychological-genetic principle, which is based on the idea to let the students rediscover or 

reinvent mathematics by using their own talent and experiences from the surrounding 

environment. (Jankvist, 2009). 

Calculus, infinite series 

Calculus fine example of mathematical disciplines in teaching that apply to supplements of 

Freudenthal to Biogenetic Law (mathematical learning in the individual (ontogenesis) follows 

the same course as the historical development of mathematics itself (phylogenesis) in such a 

large extent that we can say the teaching of mathematical analysis is currently being 

implemented under the "Anti Biogenetic Law". Indeed, according Hairer& Wanner (2008): 

“Traditionally, a rigorous first course in Analysis progresses (more or less) in the following 

order: sets, mappings ⇒ limits, continuous functions ⇒ derivatives ⇒ integration.  

On the other hand, the historical development of these subjects occurred in reverse order: 

Cantor 1875, Dedekind ⇐ Cauchy 1821, Weierstrass⇐ Newton 1665, Leibniz 1675⇐ 
Archimedes, Kepler 1615, Fermat 1638.” 

University calculus course, especially function and limits of function, cause serious problems 
to students. On the other hand, it is known from history that terms function and limits of 
function using ε-δ notation were introduced to mathematics in the end of 19th century by 
German mathematicians P. G. L. Dirichlet (1805 -1859) and K. Weierstrass (1815 - 1897). 
The start of using this notation meant the final step in such a very important period that lasted 
for several centuries. Within this development intuitive and easily understandable terms were 
substituted by less visual and understandable terms. That is why, as presented by L. Kvasz, lot 
of students can not translate into their own language everything that they hear in the lectures. 
The secondary schools mathematics ends up at the level of the 17th century mathematics (with 
polynomials and systems of equations), but university courses start with the 19th century 
mathematics notation and language. It means that two hundred years were cut out of 
syllabus. We also need to mention that this period meant a kind of stagnation for algebra, but 
for calculus it was a time of rapid development. During this time several approaches to terms 
like function, limit of function, derivative and integral were used.  
    For students it means that this approach is hardly understandable because they do not 
understand the reason why the general term of function and limits of function have been 
defined by ε-δ notation during the lectures. This gap in understanding can be nicely bridged 
by history of mathematics, to study the historical development of the terms or theory. Based 
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on this situation we can see the history of mathematics as a bridge that helps prospective 
teachers to overcame the gap that is between the mathematical concepts developed during 
secondary education and university courses. 
 
Infinite series 

    The theory of infinite series is an especially interesting mathematical construct due to its 

wealth of surprising results. In its most basic setting, infinite series is vehicle we use to extend 

the finite addition to the “infinite addition”. The standard presentation of infinite series in 

calculus courses in Slovakia as taught today is as follows: 

(1) A short introduction to infinite sequences and their limits, convergent and divergent 

sequences; 

(2) Abstract definitions of infinite series ∑ 𝑎𝑛
∞
𝑛=1  , with convergence defined in terms of limits 

of sequences of partial sums lim
𝑛→∞

𝑠𝑛 =: 𝑠, where 𝑠𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛, 𝑛 ∈ ℕ. If 𝑠 ∈ ℝ, then 

we say that series ∑ 𝑎𝑛
∞
𝑛=1  converges to the sum 𝑠, and we write  ∑ 𝑎𝑛

∞
n=1 = 𝑠;  

(3) Theorems and convergence tests for positive term series; for alternating series and for 

general series;                

(4) Definition and theorems about power series and general functional series.  

The emphasis is put on convergence and especially on convergence tests. We spend our 

time investigating whether series converge or not, but little or no time investigating what the 

series converge to. The preoccupation with determining convergence but not the sum makes 

the whole process seem artificial and pointless for many students, and instructors as well. 

(Lehmann, 2000). 

At 12th Nitra conference a lecturer wrote in her lectures on computer graphics some 

equalities in the form of divergent series (for example 1 + 2 + 3 + ⋯ + 𝑛 + ⋯ = −
1

12
) 

derived by Leonhard Euler (1707 – 1783). Most of the participating students seemed amused, 

even shaking their heads in disapproval. The noise which followed and the expression in their 

faces said: "The equality cannot hold, because these series is divergent. It does not make 

sense. How is it possible that Euler, one of the greatest mathematicians in history, did not 

know this? But the first year students already know this!” 

  This situation can be commented by D. J. Struik (1948) that: “we cannot always follow 

Euler when he writes that 1 − 3 + 5 − 7 + ⋯ = 0,  or when he concludes from 𝑛 + 𝑛2 + ⋯ =
𝑛

1−𝑛
,  and 1 +

1

𝑛
+

1

𝑛2 + ⋯ =
𝑛

𝑛−1
 that … +

1

𝑛2 +
1

𝑛
+ 1 + 𝑛 + 𝑛2 + ⋯ = 0. In this situation we 

must be careful and not too much criticize Euler for his way of manipulating divergent series; 

he simply did not always use some of our present tests of convergence or divergence as a 

criterion for the validity of his series. It is known that despite the incredible amount of work 

that Euler did, he also wrote occasionally some things that were wrong.  Euler's foundation of 

the calculus may have had some weakness, but he expressed his point of view without 

vagueness. A lot of his excellent work with series has been given a high credit by modern 

mathematicians.” A partial answer to this question can be found in the history of infinite 

series. In the first place, it is good to remark that famous definitions of infinite series ∑ an
∞
k=1 , 

with convergence defined in terms of limits of sequences of partial sums, was formulated by 
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the excellent French mathematician Augustin-Louis Cauchy (1789 - 1857) in his textbook Cours 

d'Analyse in 1821. Almost all of modern definitions of convergence of infinite series copy 

Cauchy's words formulated in his Cours d'Analyse: 

 
 

Figure 3: Cours d'Analyse (1821) Figure 4: Augustin Louis Cauchy (1789 – 1857) 

“We call a series an indefinite of quantities, 𝑢0, 𝑢1, 𝑢2, 𝑢3, …, which follow from one to another 

according to a determined law. These quantities themselves are the various terms of the series 

under consideration. Let 𝑠𝑛 = 𝑢0 +  𝑢1 +  𝑢2 + ⋯ +  𝑢𝑛−1  to be the sum of the first 𝑛 terms, 

where 𝑛 denotes any integer number. If, for ever increasing values of 𝑛, the sum 𝑠𝑛 indefinitely 

approaches a certain limit 𝑠, the series is said to be convergent, and the limit in question is 

called the sum of the series. On the contrary, if the sum 𝑠𝑛 does not approach any fixed limit 

as it increases infinitely, the series is divergent, and does not have a sum. In either case, the 

term which corresponds to the index 𝑛, that is 𝑢𝑛, is what we call the general term. For the 

series to be completely determined, it is enough that we give its general term as a function of 

the index 𝑛. " (Bradley & Sandifer, 2009).       Clarity and 

naturalness of Cauchy's  definition* gives the impression that this is the only way we can define 

the sum of the infinite  series and its convergence. It even seems to be the only available 

approach. The historical truth is different. First, we must realize that infinite series had already 

more than 2000 years of history at that time, and specific definition of an infinite series, with 

convergence defined in terms of limits of sequences of partial sums, was formulated later. 

Note that Newton used the term “prime and ultimate ratio” for the “fluxion”, as the first or 

last ratio of two quantities just springing into being. D'Alembert replaced this notion by the 

conception of a limit in the article “Limite” of the “Encyclopedia”(edited by D. Diderot and until 

1759 co-edited by d'Alembert) at the end of the 18th century. Moreover, as stated by N. 

Bourbaki (1993) “And if d'Alembert is happier here, and recognises that in the "metaphysics" 

of the infinitesimal Calculus there is nothing other than the notion of limit (articles 

DIFFERENTIEL and LIMITE), he is no more able than his contemporaries, to understand the real 

meaning of expansion in divergent series, and to explain the paradox of exact results obtained 

at the end of calculations with expressions deprived of any numerical interpretation.”  We 

                                                           
* Thus we currently define a series to be an ordered  pair ({𝑎𝑛}, {𝑠𝑛}) of sequences connected by the relation 
(𝑠𝑛 = ∑ 𝑎𝑘

𝑛
𝑘=1 ) for all 𝑛 ∈ ℕ. 
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can see that in some respect it looks like a task to solve a simple mathematical problem that 

can be found in IQ tests, but also in mathematical textbooks:   

Find the next number in the sequence:  2, 4, 6, . .. .  

It is number 8 which is almost exclusively considered to be the natural and the only correct 

answer. Students are then very surprised (some authors of IQ tests may not know it now), that 

task has infinitely many solutions. Any real number 𝐴 ∈ ℝ is the solution of this problem. In 

other words, each (numerical) answer is correct. Just look at the problem in terms of 

numerical analysis, construct corresponding Lagrange polynomial 𝑎𝑛 and determine 𝑎4: 

𝑎𝑛 = 2
(𝑛−2)(𝑛−3)(𝑛−4)

(1−2)(1−3)(1−4)
+ 4

(𝑛−1)(𝑛−3)(𝑛−4)

(2−1)(2−3)(2−4)
+ 6

(𝑛−1)(𝑛−2)(𝑛−4)

(3−1)(3−2)(3−4)
+ 𝐴

(𝑛−1)(𝑛−2)(𝑛−3)

(4−1)(4−2)(4−3)
, 𝑛 ∈ ℕ. We 

can easily verify that for 𝑛 = 4 we really get 𝑎4 = 𝐴. 

Some historical remarks on infinite series 

A time-honoured problem in this area is Zeno of Elea’s paradoxes of “Dichotomy“, and 

“Achilles and the Tortoise“*, which are concerned with convergent geometric series  
1

2
+

1

4
+

1

8
+ ⋯ +

1

2𝑛 + ⋯ = 1. According to Aristotle, Zeno’s argument is a fallacy. For one 

cannot actually subdivide an interval infinitely many times. Infinite subdivision is only 

potential. In his Physics Aristotle (384-322 BC) himself implicitly underlined that the sum of a 

series of infinitely many addends (potentially considered) can be a finite quantity. Of course, 

it is possible to employ several visual representations (see Figure 1: the big square with sides 

long 1 unit, divided into a sequence of squares or triangles). In his Quadratura parabolæ 

Archimedes (287-212 BC) considered (implicitly, once again) a geometric series  1 +
1

4
+

1

42 +
1

43 + ⋯ +
1

4𝑛 + ⋯ =
4

3
.  Sums of other special geometric series were determined by 

mathematicians Nicole Oresme (1323 - 1382) and R. Swineshead. Geometric series played a 

crucial role in earlier research on series. Swineshead in his work (1350) when determining  

  

Figure 5: Visualizations a sum of series
1

2
+

1

22 + ⋯ +
1

2𝑛 + ⋯ = 1. 

the average speed of uniformly accelerated motion needed to determine the sum of the first 

infinite series which was not geometric. He proved that 
1

2
+

2

22
+

3

23
+ ⋯ +

𝑛

2𝑛
+ ⋯ = 2. 

Oresme was the first who managed to show (around 1350) that the harmonic series 

                                                           
*Dichotomy Paradox: That which is in locomotion must arrive at the half-way stage before it arrives at the goal. 
Achilles and the Tortoise: In a race, the quickest runner can never overtake the slowest, since the pursuer must 
first reach the point whence the pursued started, so that the slower must always hold a lead. (Aristotle, Physics) 

http://en.wikipedia.org/wiki/Aristotle
http://en.wikipedia.org/wiki/Physics_(Aristotle)
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∑
1

𝑛
= 1 +

1

2
+

1

3
+ ⋯ +

1

𝑛
+ ⋯∞

𝑛=1  is divergent. It is a very surprising result because the 

harmonic series diverges very slowly, e. g. the sum of the first 1043 terms is less than 100. The 

main Oresme’s consideration consisted of an interesting estimate 

1 +
1

2
+ (

1

3
+

1

4
) + (

1

5
+ ⋯ +

1

8
) + (

1

9
+ ⋯ +

1

16
) + ⋯ > 1 +

1

2
+

1

2
+

1

2
+

1

2
+ ⋯. However, one 

must not conclude that Oresme or mathematicians in general began to distinguish convergent 

and divergent series. His results were lost several centuries, and the result was proved 1647 

again by Italian mathematician Pietro Mengoli and in 1687 by Swiss mathematician Johann 

Bernoulli. In his Varia Responsa (1593) François Viète (1540 -1603) gave the formula for the 

sum of an infinite geometric progression. From Euclid´s Elements he took that the sum of n 

terms of 𝑠𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 is given by 𝑎1: 𝑎2 = (𝑠𝑛 − 𝑎𝑛): (𝑠𝑛 − 𝑎1). Then if  a1/a2 >

1, 𝑎𝑛 approaches 0 as becomes infinite, so that 𝑠∞ =
(𝑎1)2

𝑎1−𝑎2
  (Kline, 1972). A few decades later 

Grégoire de Saint-Vincent made geometric series a crucial instrument in his method of 

quadratures. Saint-Vincent, as well Viète, had an intuitive but clear idea of what the sum of 

series was (whatever words they used to denote the sum). Mengoli made a remarkable 

contribution to the uprising theory of series. Mengoli found ∑
(−1)𝑛+1

𝑛
= ln 2∞

𝑘=1  and he 

showed how it is possible to determine the sum of several infinite series, which we now call 

the telescopic series (specifically ∑
1

𝑘(𝑘+𝑚)

∞
𝑘=1   for 𝑚 = 1, 2, 3). Another important step 

was made by Isaac Newton (1642 – 1727) in A Treatise on the Methods of Series and Fluxions 

(1671), when infinite series with numbers are extended to series containing variable 

expressions. Newton asserts that any proper operation that can be performed in arithmetic 

on numbers can likewise be performed in algebra on variable expressions. Just as arithmetic 

operations produce highly useful infinite decimal expressions, the same operations may 

produce highly useful infinite series in algebra. If we compare the following two processes (in 

modern symbols) that are almost identical, and in both cases the exception of the condition 

𝑞 ≠  1, no restriction on 𝑞: 

1. If 𝑠𝑛 = 𝑎 + 𝑎𝑞 + 𝑎𝑞2 + ⋯ + 𝑎𝑞𝑛−1, then 𝑞𝑠𝑛 = 𝑎𝑞 +  𝑎𝑞2 + ⋯ + 𝑎𝑞𝑛−1 + 𝑎𝑞𝑛, 

therefore  𝑞𝑠𝑛 −  𝑠𝑛 =  𝑎𝑞𝑛 − 𝑎, whence 𝑠𝑛 = 𝑎
1−𝑞𝑛

1−𝑞
, 𝑞 ≠ 1. 

2. If 𝑆 = 𝑎 + 𝑎𝑞 + 𝑎𝑞2 + 𝑎𝑞3 + ⋯ , then 𝑞𝑆 = 𝑎𝑞 + 𝑎𝑞2 + 𝑎𝑞3 + 𝑎𝑞4 + ⋯, therefore  

𝑆 − 𝑞𝑆 = 𝑎. Therefore, for 𝑞 ≠ 1 it holds 𝑆 =
𝑎

1−𝑞
.      

Using the previous relationships, we also get (for 𝑞 = 𝑥, 𝑞 = −𝑥, 𝑞 = −𝑥2) the following 

sums of infinite series: 1 + 𝑥 + 𝑥2 + 𝑥3 + ⋯ =
1

1−𝑥
 , 𝑥 ≠ 1, respectively 1 − 𝑥 + 𝑥2 − 𝑥3 +

⋯ =
1

1+𝑥
 , 𝑥 ≠ −1, 1 − 𝑥2 + 𝑥4 − 𝑥6 + ⋯ =

1

1+𝑥2
 . 

Newton, Euler and Lagrange considered infinite series to be a part of algebra of 

polynomials. It means that series were considered to be polynomials that can express the 

original function, without any convergence control. 

Perhaps this is a point where most, if not all, students would agree and they would require 

no proof that there is anything wrong with this reasoning. From these geometric series a 

power series representation can be obtained for a wider variety of functions, since power 
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series can be differentiated or integrated term by term in order to obtain a new power series. 

Of course in such a formal approach no restrictions on 𝑥 do not occur. Isaac Newton in 1667 

and N. Mercator in 1668 obtained the result ∑
(−1)𝑛+1

𝑛
𝑥𝑛 = ln (1 + 𝑥)∞

𝑘=1  by integrating the 

power series for  
1

1+𝑥
. The sensational discovery of sums of this series just opened quite new 

perspectives for the application of series, and mainly power series, to problems previously 

referred to as "impossible". J. Gregory in 1671 and G. W. Leibniz in 1673 obtained the result 

∑
(−1)𝑛+1

2𝑛−1
=

𝜋

4

∞
𝑘=1   by integrating the power series for 

1

1+𝑥2 and stating 𝑥 = 1. 

It is appropriate to note that according to Kline (1972) infinite series were in the 17th and 

18th centuries and are still today considered to be the essential part of calculus. Indeed, 

Newton considered series inseparable from his method of fluxions because the only way he 

could handle even slightly complicated algebraic functions and the transcendental functions 

was to expand them into infinite series and differentiate or integrate term by term. Newton 

obtained many series for algebraic and transcendental functions. In his De Analysi in 1669 he 

provided the series for  sin 𝑥, cos 𝑥, arcsin 𝑥, 𝑒𝑥 . The Bernoullis, Euler, and their 

contemporaries relied heavily on the use of series. Only gradually did the mathematicians 

learn to work with the elementary functions in closed form, that is, simple analytical 

expressions. Nevertheless, series were still the only representation for some functions and the 

most effective means of calculating the elementary transcendental functions. The successes 

obtained by using infinite series became numerous as the mathematicians gradually extended 

their discipline. The difficulties in the new concept were not recognized, at least for a while. 

Series were just infinite polynomials and appeared to be treatable as such. Moreover, it 

seemed clear, as Euler and Lagrange believed, that every function could be expressed in form 

of a series. 

Intuitive understanding of the concept of the sum of an infinite series and often mechanical 

transmission of properties of finite sums on infinite sums has brought many problems and 

paradoxical outcome. Simply said, a finite sum is well-defined, an infinite sum is not. This can 

be illustrated by a simple example of infinite series. 

Let s denote the sum of (telescopic) convergent series  𝑠 =
1

1.3
+

1

3.5
+

1

5.7
+ ⋯ . Then 

𝑠 = (
1

1
−

2

3
) + (

2

3
−

3

5
) + (

3

5
−

4

7
) + ⋯ =

1

1
−

2

3
+

2

3
−

3

5
+

3

5
−

4

7
+ ⋯ = 1, since all terms 

after the first one are mutually cancelled out. Again 

s =
1

2
(

1

1
−

1

3
) +

1

2
(

1

3
−

1

5
) +

1

2
(

1

5
−

1

7
) + ⋯ =

1

2
−

1

6
+

1

6
−

1

10
+

1

10
−

1

14
+ ⋯ =

1

2
, since all 

terms after the first are cancelled out. Then  1 =
1

2
 . 

The series which provoked the greatest debates and controversy is 

1 − 1 + 1 − 1 + ⋯ + (−1)𝑛+1 + ⋯ . It seemed clear that by writing the series as  

(1 − 1) + (1 − 1) + (1 − 1) + ⋯ the sum should be 0. It also seemed clear that by writing 

the series as 1 + (−1 + 1) + (−1 + 1) + (−1 + 1) + ⋯ the sum should be 1. However, if 𝑆 

is used to denote sum 𝑆 = 1 − 1 + 1 − 1 + ⋯,  then 𝑆 = 1 − (1 − 1 + 1 − 1 + ⋯ ), i. e. 𝑆 =

1 − 𝑆, so 𝑆 =
1

2
. Guido Grandi (1671 - 1742), a professor of mathematics at University of Pisa, 
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in his book Quadratura Circuli et Hyperbolae (1703), obtained  the result by another method. 

He set  𝑥 = 1 in the expansion 
1

1+𝑥
 = 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯ 

and obtained 
1

2
= 1 − 1 + 1 − 1 + 1 − 1 + ⋯. Guido Grandi considered the formula 

1

2
= 1 − 1 + 1 − 1 + 1 − 1 + ⋯ = (1 − 1) + (1 − 1) + ⋯ = 0 + 0 + 0 + ⋯ = 0, to be the 

symbol for creation of world from Nothing. He obtained the result  
1

2
 by considering the case 

of a father who bequeathed a gem to his two sons, each allowed to keep it one year 

alternately. It then belonged to each son by one half. (Struik, 1948). Several mathematicians 

of this period (J. Riccati, P. Varignon and Nicholas I. Bernoulli) did not agree with this 

reasoning. The same result, based on interesting probabilistic reasoning, was arrived at by 

G. W. Leibniz. Instead, Leibniz argued that if one takes the first term, the sum of the first two, 

the sum of the first three, and so forth, one obtains 1, 0, 1, 0, 1, … . Thus 1 and 0 are equally 

probable; one should therefore take the arithmetic mean, which is also the most probable 

value, as the sum. This solution was accepted by James and John Bernoulli, Daniel Bernoulli, 

and Lagrange. Leibniz conceded that “his argument was more metaphysical than 

mathematical, but went on to say that there was more metaphysical truth in mathematics 

than was generally recognized” (Kline, 1972, p. 446). Christian Wolf (1678 -1754) wished to 

conclude that 1 − 2 + 4 − 8 + ⋯ =
1

3
,   1 − 3 + 9 − 27 + ⋯ = 1/4 by using an extension of 

Leibniz's own probability argument. Real extensive work on series began about 1730 with 

Leonhard Euler (1707-1783), who aroused tremendous interest in the subject. Euler 

summarizes Leibniz's arguments and he wrote: “Now if, therefore, the series is taken to 

infinity and (consequently) the number of terms cannot be regarded as either even or odd, it 

cannot be concluded that the sum is either 0 or 1, but we ought to take a certain median value 

which differs equally from both, namely ½.” To obtain the sum of 1 − 1 + 1 − 1 + ⋯ . His 

second argument pointed out in his textbook Institutiones calculi differentialis (1755):  

  

Figure 6: Luigi Quido Grandi  (1671 -1742) Figure 7: Leonhard Euler (1707 - 1783) 

“We state that the sum of an infinite series is the finite expression by which the series is 

generated. From this point of view the sum of the infinite series 1 − 𝑥 + 𝑥2 − 𝑥3 + ⋯  is 

1/(1 +  𝑥) because the series arises from the development of the fraction, for every value 𝑥.” 

As divergent series are considered such an inconvenience, we can settle defining the sum 

of a series in terms of limits of sequences of partial sums (as we do at present) and dismiss as 
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"divergent" any series that does not satisfy this convergence requirement. Well, the lecturer, 

who presented at the Conference in Nitra, knew well Cauchy´s definition of sum of infinite 

series. Another alternative is to redefine the concept of "sum". Among those making the 

attempt to save the divergent series for analysis was Leonhard Euler. He attempted to redefine 

the meaning of "sum" in a significantly more abstract fashion, further from the then common 

understanding of "sum" as "to add up." Euler proposed the following definition for "sum", also 

referred Euler's principle: “Understanding of the question is to be sought in the word "sum"; 

this idea, if thus conceived-namely, the sum of a series is said to be that quantity to which it is 

brought closer as more terms of the series are taken-has relevance only for convergent series, 

and we should in general give up this idea of sum for divergent series. Wherefore, those who 

thus define a sum cannot be blamed if they claim they are unable to assign a sum to a series. 

On the other hand, as series in analysis arise from the expansion of fractions or irrational 

quantities or even of transcendentals, it will in turn be permissible in calculations to substitute 

in place of such a series that quantity out of whose development it is produced. For this reason, 

if we employ this definition of sum, that is, to say the sum of a series is that quantity which 

generates the series, all doubts with respect to divergent series vanish and no further 

controversy remains on this score, inasmuch as this definition is applicable equally to 

convergent or divergent series.” (Barbeau and Leah, 1976).  

The intuitive formation of this definition of "sum" reflects an attitude still current among 

applied mathematicians and physicists: problems that arise naturally (i.e., from nature) do 

have solutions, so the assumption that things will work out eventually is justified 

experimentally without the need for existence sorts of proof. Assume everything is okay, and 

if the arrived-at solution works, you were probably right, or at least right enough. (Lehmann, 

2000). For example Euler wrote                    

1/4 = 1 − 2 + 3 − 4 + ⋯ ,         0 = 1 − 3 + 5 − 7 + ⋯,      −1 = 1 + 2 + 4 + 8 + ⋯    

because these series arose from expansions 
1

(1+𝑥)2 = 1 − 2𝑥 + 3𝑥2 − 4𝑥3 + ⋯ ,
1−𝑥

(1+𝑥)2 = 1 − 3𝑥 + 5 − 7𝑥3 + ⋯ ,
1

1−2𝑥
= 1 + 2𝑥 + 4𝑥2 + ⋯      

and setting  𝑥 = 1. 

N. Bernoulli replied that the same series might arise from expansion of two different 

functions and, if so, the sum would not be unique. From a theoretical point of view this would 

be a serious problem. And, really J. Ch. Callet showed that the series 

1 − 1 + 1 − 1 + ⋯ may be obtained from the expansion 
1+𝑥

1+𝑥+𝑥2 =
1−𝑥2

1−𝑥3 = 1 − 𝑥2 + 𝑥3 − 𝑥5 + 𝑥6 − 𝑥8 + ⋯ and setting 𝑥 = 1, we get  
2

3
 instead 

Euler's  
1

2
. Joseph-Louis L. Lagrange (1736 -1813) considered this objection and argued that 

Callet's example was incomplete. When the missing terms were included, the series should 

have been written 

1 + 0𝑥 − 𝑥2 + 𝑥3 + 0𝑥4 − 𝑥5 + 𝑥6 + 0𝑥7 − 𝑥8 + ⋯ 

so what was summed was 1 + 0 − 1 + 1 + 0 − 1 + 1 + 0 − 1 + ⋯ a series whose partial 

sums are 1, 1, 0, 1, 1, 0, …  with average sums  
2

3
 .  And, in fact, Euler's assertion, when properly 

interpreted, is correct, since a convergent power series has a unique generating function. It is 
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clear that before the 19th century divergent series were widely used by Euler and others, but 

often led to confusing and contradictory results. English mathematician G. H. Hardy (1877-

1947), author of the excellent book Divergent series (1949) suggests that “...It is a mistake to 

think of Euler as a 'loose' mathematician, though his language may sometimes seem loose to 

modern ears; and even his language sometimes suggests a point of view far in advance of the 

general ideas of his time. …Here, as elsewhere, Euler was substantially right. The puzzles of the 

time about divergent series arose mostly, not from any particular mystery in divergent series 

as such, but from disinclination to give formal definitions and from the inadequacy of the 

current theory of functions. It is impossible to state Euler's principle accurately without clear 

ideas about functions of a complex variable and analytic continuation”. It must, however, 

admit that in spite of great Euler’s authority divergent series arouse ever greater mistrust. This 

attitude of mathematicians is succinctly explained by Norwegian mathematician Niels H. Abel 

(1802 – 1829) in 1828: “Divergent series are the invention of the devil, and it is shameful to 

base on them any demonstration whatsoever.“ In the ensuing period of critical revision they 

were simply rejected. Then came a time when it was found that something after all could be 

done about them. Mathematics after Euler moved slowly but steadily towards the orthodoxy 

ultimately imposed on it by Cauchy, Abel, and their successors, and divergent series were 

gradually banished from analysis, to appear only in quite modern times. After Cauchy, the 

opposition seemed definitely to have won. 

The above mentioned information should not lead to the impression that Cauchy's Cours 

d'Analyse textbook, which already contains the foundations of his new theory of infinite 

series, was a step backwards. The opposite is true. It was a very necessary and important step. 

Cauchy was in fact another brilliant mathematician who greatly influenced the character of 

infinitesimal calculus. Victory of the Cauchy's approach was very important for the further 

development of the actual theory of infinite series. Cauchy's formulation of the definition of 

the sum of the infinite series by a sequence of partial sums limits and precise distinction 

between convergent and divergent series, was a ground-breaking milestone in the history of 

the theory of series. This has become the standard for the next period, providing a uniform 

platform and some unified approach for justifying and derivation of results. 

Cauchy's attitude to divergent series is openly declared in the introduction to the Cours 

d'Analyse: “As for methods, I have sought to give them all the rigor that one requires in 

geometry, so as never to have recourse to the reasons drawn from the generality of algebra. 

Reasons of this kind, although commonly admitted, particularly in the passage from 

convergent series to divergent series, and from real quantities to imaginary expressions, can, 

it seems to me, only sometimes be considered as inductions suitable for presenting the truth, 

but which are little suited to the exactitude so vaunted in the mathematical sciences. We must 

at the same time observe that they tend to attribute an indefinite extension to algebraic 

formulas, whereas in reality the larger part of these formulas exist only under certain 

conditions and for certain values of the quantities that they contain. Determining these 

conditions and these values, and fixing in a precise way the sense of the notations I use, I make 

any uncertainty vanish; and then the different formulas involve nothing more than relations 
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among real quantities, relations which are always easy to verify on substituting numbers for 

the quantities themselves. In order to remain faithful to these principles, I admit that I was 

forced to accept several propositions which seem slightly hard at first sight. For example . . . a 

divergent series has no sum.” (Cauchy, 1821, ii–iii). The initial reaction of our founders of 

nineteenth-century analysis (Cauchy, Abel, and others) was that valid arguments could be 

based only on convergent series. Divergent series were mostly excluded from mathematics. 

We saw that many eighteenth century mathematicians achieved spectacular results with 

divergent series but without a proper understanding of what they were doing. They 

reappeared in 1886 with Poincare’s work on asymptotic series. In 1890 Ernesto Cesàro (1859-

1906) realized that one could give a rigorous definition of the sum of some divergent series, 

and defined Cesàro  summation as follows: 

     If 𝑠𝑛 = 𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 and lim
n→∞

𝑠1+𝑠2+⋯+𝑠𝑛

𝑛
≔ s ∈ ℝ, then we call s the (C, 1) sum of 

∑ 𝑎𝑛
∞
𝑛=1  and we write ∑ 𝑎𝑛

∞
𝑛=1 = 𝑠[Cesàro]. 

For example ∑ (−1)𝑛+1∞
𝑛=1 =

1

2
[Cesàro], but ∑ n∞

n=1  is not Cesàro summable because the 

terms of the sequence of means of partial sums {𝑡𝑛}, 𝑡𝑛 =
1

𝑛
∑ 𝑠𝑘

𝑛
𝑘=1  are here 

1

1
,

4

2
,

10

3
,

20

4
, … and this sequence diverges to infinity. Cesàro’s key contribution was not the 

discovery of this method but his idea that one should give an explicit definition of the sum of 

a divergent series. In the years after Cesàro’s paper several other mathematicians gave other 

definitions of the sum of a divergent series, though these are not always compatible: different 

definitions can give different answers for the sum of the same divergent series, so when 

talking about the sum of a divergent series it is necessary to specify which summation method 

one is using. In addition to Cesàro summation to the most known summation methods include 

Abel summation and Euler summation. For illustration we add Abel summation method which 

is similar to the well-known Abel’s theorem on power series:  

      If ∑ 𝑎𝑛
∞
𝑛=1 𝑥𝑛 is convergent for 0 ≤ 𝑥 < 1 (and so for all 𝑥, with |𝑥| < 1),𝑓(𝑥) is its sum, 

and 𝑙𝑖𝑚
𝑥→1−0

𝑓(𝑥) = 𝑠, then we call s the 𝐴 𝑠𝑢𝑚 of ∑ 𝑎𝑛
∞
𝑛=1 𝑥𝑛 and we write 

 ∑ 𝑎𝑛
∞
𝑛=1 = 𝑠[Abel]. 

Abel summation is interesting in part because it is consistent with and at the same time 

more powerful than Cesàro summation. We say that asummability method M is regular if it is 

equal to the commonly used limit (of partial sums) on all convergent series. It can be easily 

verified that the Cesàro summation and Abel summation are regular methods. Such a result is 

called an abelian theorem for M, from the prototypical Abel’s theorem. More interesting and 

in general more subtle are partial converse results, called tauberian theorems, from 

a prototype proved by Austrian mathematician  Alfred Tauber*. Here partial converse means 

that if M sums the series Σ, and some side-condition holds, then Σ was convergent in the first 

place; without any side condition such a result would say that M only summed convergent 

series (making it useless as a summation method for divergent series). Finally, let us note, 

                                                           
* Tauber was born in Pressburg, now Bratislava, Slovakia in 1866 and died in concentration camp in 
Theresienstadt, now Terezin, Czech Republic  in around 1942. 

http://en.wikipedia.org/wiki/Cesaro_summation
http://en.wikipedia.org/wiki/Abelian_theorem
http://en.wikipedia.org/wiki/Abel%27s_theorem
http://en.wikipedia.org/wiki/Tauberian_theorems
http://en.wikipedia.org/wiki/Alfred_Tauber
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using Hanh-Banach theorem which is a central tool in functional analysis, it can be shown that 

each series whose sequence of partial sums is bounded is summable through some methods. 

Unfortunately proof of this statement is non-constructive. Mathematicians introduced 

recurrent series and emphasized the law of formation of coefficients, independent of the 

convergence of series. The attempt to increase the speed of convergence of series 

subsequently led to the emergence of asymptotic series, which showed the possibility of using 

divergent series to obtain appropriate approximations.  

      In conclusion, let us get back to the infinite series ∑ 𝑛 = 1 + 2 + 3 + 4 + ⋯∞
𝑛=1  which we 

started our considerations with. This series belongs to infinite series which are assumed sums 

only with tough efforts, since this series is neither Cesàro summable, nor Abel summable. 

Using the equation ∑ (−1)𝑛+1𝑛𝑥𝑛∞
𝑛=1 =

1

(1+𝑥)2 , it can be rigorously proved that 

 ∑ (−1)𝑛+1𝑛∞
𝑛=1 = lim

𝑥→1−
∑ (−1)𝑛+1𝑛𝑥𝑛∞

𝑛=1 = lim
𝑥→1−

1

(1+𝑥)2 =
1

4
[Abel].  

Euler then went on to compute the sum of all natural numbers, as follows. First, he considered 

what is now called the Riemann zeta function*:      

 𝜁(𝑠) =  1−𝑠 + 2−𝑠 + 3−𝑠 + 4−𝑠 + 5−𝑠 + 6−𝑠 + ⋯. 

Multiplying by 21−𝑠, he obtained 21−𝑠𝜁(𝑠) =       2. 2−𝑠 +          2. 4−𝑠 +         2. 6−𝑠 + ⋯. 

Subtracting the second equation form the first one, he got  

                       (1 − 21−𝑠)𝜁(𝑠) = 1−𝑠 − 2−𝑠 + 3−𝑠 − 4−𝑠 + 5−𝑠 − 6−𝑠 + ⋯,     

then, after evaluating both sides at   𝑠 = −1, he got             

𝜁(−1) = 1 + 2 + 3 + 4 + ⋯ = (−
1

3
) (1−𝑠 − 2−𝑠 + 3−𝑠 − 4−𝑠 + 5−𝑠 − 6−𝑠 + ⋯ ) = −

1

12
. 

Conclusions 

History of mathematics can deepen the conceptual understanding of mathematical 
concepts and theories and lighten their roots and sources. This understanding is essential in 
education as well as in further practice and support for good decision-making. In our 
contribution we present one basic example of the use of history of mathematics to help 
lecturers as well as learners understand and overcome epistemological obstacles in the 
development of mathematical understanding of series. Based on the principal that “ontogeny 
recapitulates phylogeny” – we see it appropriate that the development of an individual’s 
mathematical understanding respect the historical development of mathematical ideas. Even 
though this approach is demanding in many ways we see this combination with historical and 
psychological perspectives very promising in further teacher development. 

We presented this approach with a short overview of history of series theory. We would 
like to stress that divergent series should be treated with the same respect as convergent 
series. The first course in series methods often gives the impression of obsession with the 
issue of convergence or divergence of a series. The huge amount of tests might lead one to 
this conclusion. Accordingly, you may have decided that convergent series are useful and 
proper tools of analysis while divergent series are useless and without merit. In fact divergent 
series are, in many instances, as important as, or more important than convergent ones. Many 
eighteenth-century mathematicians achieved spectacular results with divergent series but 

                                                           
** The Riemann zeta function is an extremely important special function of mathematics and physics that arises 
in definite integration and is intimately related with very deep results surrounding the prime number theorem. 
While many of the properties of this function have been investigated, there remain important fundamental 
conjectures (most notably the Riemann hypothesis) that remain unproved to this day. 

https://en.wikipedia.org/wiki/Functional_analysis
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without proper understanding of what they were doing. The initial reaction of the founders of 
the nineteenth-century analysis (Cauchy, Abel, and others) was that valid arguments could be 
based only on convergent series, and that divergent series should be avoided. There are many 
useful ways of doing rigorous work with divergent series. One way, which we now study, is 
the development of summability methods. 

 This approach also needs to be more emphasized during prospective teacher preparation 
and teachers should transfer the approach into their teaching. 
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