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Abstract 

Considering three simple function systems which consist of power functions with odd exponents and two linear 

functions of one real variable, we are constructing actions of the additive group of all integers on the set of all 

real numbers, i.e. cascades. Using certain extensions based on prolongations of flows, we obtain the system of 

cascades which are mutually isomorphic. One from consequences of the result is that all solution sets of 

corresponding functional equations formed with the use of given functions are non-empty, moreover all 

solution sets consisting of permutations of the set of all reals are non-empty, as well. 
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Introduction 

The theory of dynamical systems is a very broad mathematical area historically arising from 
the theory of ordinary differential equations. As it has been mentioned in [1, 2], the 
qualitative theory of ordinary differential equations and the theory of dynamical systems 
arose within the theory of differential equations; in time, the theory of dynamical systems 
attained a definite autonomy, and it can now be regarded as an independent branch of 
mathematics, which continues to develop intensively. It retains a close connection with the 
theory of differential equations, and the boundary between them is not particularly sharp. 
At the same time, the theory of dynamical systems has established new connections with 
the branches of mathematics which appear ever more essential for certain questions in the 
theory of dynamical systems. Even the concept of a dynamical system has itself evolved 
considerably – [2, 3, 4, 7, 12].  

In this contribution we will concentrate ourselves onto cascades (called also discrete flows). 
Let us recall that a flow is in fact a one-parameter group or semigroup of transformations 
acting on a set M, which is called the phase space of the flow. In other words, associated to 

each t R (the set of all real numbers) or t R0
+ (the set of all non-negative real numbers), 

there is a mapping gt : M  M such that the group property holds, i. e.  

g0 = idM , gt+s = gt о gs, 
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 for all t, s under consideration. A cascade differs from a flow in that the maps gt are only 

defined for t Z (the set of all integers) or t N0  (the set of all non-negative integers).   
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If k Z, the notation gk denotes the k-th iterate of the mapping g = g1 for k  0 and the k-th 

iterate of g1 when k  0. The name „cascade“ is used to contrast it to a „flow“. Flows are 
most often encountered in applications, but cascades also appear. For example, in ecology 
one might want to study changes in a population with non-overlapping adult generations. 
Here the generations play the role of discrete time. Nevertheless, the main significance of 
cascades lies in the fact that they are usually technically somewhat simpler than flows; at the 
same time, the essence of the matter may be the same in both cases. Thus, results obtained 
for cascades frequently carry over to flows, often not by way of a formal reduction, but by 
some modifications of the proofs. 

Preliminaries 

Let us recall that a cascade is sometimes called a discrete flow or a flow with a discrete time. 

Let us mention other necessary concepts. Functions f: R  R, g: R  R are called conjugated 

if there is a bijection h: R R such that h о f =g о h [10]. Corresponding mono-unary algebras 
(R,f), (R,g) are then said to be isomorphic and the mapping h is an isomorphism. In general, 

a mapping h: (R, f)  (R, g) with the above property (h(f(x)) = g(h(x)), x R), is called 
a homomorphism of the mono-unary algebra (R, f) into the mono-unary algebra (R,g) - [9].  

Let (G, , e) be a group with the unit e, X  , : X  G  X be a mapping satisfying these 
conditions:     

(i)   (x, e) = x for any x X (the Identity axiom), 

(ii)  ((x, a), b) =  (x, a  b) for all x X, a, b G (the Homomorphism axiom or the Mixed 
associability condition – MAC). 

Then the triad A = (X, G, ) is said to be the action of the group G on the set X [6] or 
a discrete dynamical system with the phase group G and the phase set (space) X [12]. If G =R, 

X is a metric space or a topological space, : X  G  X is a continuous mapping, then the 
action A is called a flow. If G = (Z, +) and X is a set without – not necessary – any additional 
structure, the action A is termed a cascade. 

If A = (X, G, A), B = (Y, G, B) are cascades with the same phase group G, then a mapping     

h: X Y such that B(h(x),a) = h(A(x,a)) for any pair [x,a] X  G is said to be a 
homomorphism of the cascade A into the cascade B. If h is a bijection, then this 

homomorphism is called an isomorphism. If some isomorphism h: A  B exists, the cascades 

A, B are said to be isomorphic and we write A  B.  

Let (X, f) be a mono-unary algebra. Let us denote by f n: X  X  the n-th iteration of the 

mapping f. Let us suppose f: X  X is a bijective mapping. To the algebra (X, f) we can assign 

the action Af = (Z, X, f ), where f (m, x) = f m (x) for any m Z and x X, where f m for m = 

n, n  N is defined f m = (f 1)n  because the inverse bijection f 1 to the bijection f exists. It is 
evident that the above conditions (i), (ii) are satisfied, thus the action Af  is a cascade. 

Moreover, if (X,f), (Y,g) are mono-unary algebras and Af = (Z, X, f ), Ag = (Z, Y, g) are 

corresponding cascades, then for any homomorphism h: (X, f) (Y, g) (i. e. h(f(x)) = g(h(x)), 

x X) we have that h: Af  Ag is a homomorphism of cascades, thus the described 
construction is functorial. 
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Orbital decompositions of mono-unary algebras 

Let us remind the concept of an orbital decomposition of a mono-unary algebra [9, 11]. Let 

us suppose (X, f) is a mono-unary algebra where the mapping f: X  X is not necessary 

bijective or injective. We define a binary relation f  X  X in this way: For x, y  X we put 

xf y whenever there exists a pair [m, n]  N0  N0 such that f n (x) = f m (y). The relation f  is 

an equivalence on X called a KW-equivalence (Kuratowski-Whyburn). Blocks S X f are 

called f-orbits. A subalgebra (S, f S) (here symbols f S mean the restriction of the function f 
onto the set S) of the mono-unary algebra (X, f) is said to be a component of the algebra     

(X, f) (of course, there holds f(S)  S). If {(S , f );   I} is the system of all components of 

the algebra (X, f) (here f = f  S) , we write  

(X, f) = 
I

)f,S(


  

and this sum is termed as an orbital decomposition of the mono-unary algebra (X, f).  

Now let us consider three one-parametrical systems of elementary functions: 

k (x) = x2k+1, k (x) = (k+1)x, k (x) = x + k, x  R, k  N.   

All considered functions are bijections of the set R of all real numbers onto itself; functions 

k have three fixed points 1, 0, 1 for any k  N, functions k  have exactly one fixed point 0, 

functions k  do not have any fixed point. Denoting by (0, 1) the open interval {x R; 0 x 1}, 
we obtain the following assertion describing orbital decompositions of mono-unary algebras 

(R, k), (R, k), (R, k).  

Lemma:  The mono-unary algebras (R,k), (R,k), (R,k) for k N have these orbital 
decompositions: 

(R, k) = ({1}, id) + ({0}, id) + ({1}, id) + 
 )1,0(

k, ),X(


  , 

(R, k) = ({0}, id) + 
 )1,0(

k, ),Y(


  ,    (R, k) = 
 )1,0(

k, ),K(


  , 

where  ,k  = k  X ,  ,k = k  Y ,  ,k = k  K ,   (0, 1) and 

(X ,  ,k)    (Y ,  ,k)    (K ,  ,k)    (Z , Z) 

for any index   (0, 1) and Z (m) = m + 1, m  Z.                                                                  

     If (X, f), (Y, g) are mono-unary algebras, let us denote by Hom((X, f), (Y, g)) the set of all 
homomorphisms of the algebra (X, f) into the algebra (Y, g), and similarly, if A, B are 
cascades, then Hom(A, B) means the set of all homomorphisms of the cascade A into the 
cascade B. 

     Constructions of homomorphisms of mono-unary algebras are described in [9], where 
various modifications and applications of presented constructions are also included.  For 

example, all homomorphisms of the algebra (R, k) into the algebra (R, k) can be obtained 

in this way: Let T be the set of all functions  : (0, 1)   0, 1) and   be the set of all 
isomorphisms  

 : (X , , k )  (Y() , (), k ) 
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if ()   0 including the constant mapping  : X  {0} for   (0, 1). Now we put f(1) = f(0) 

= f(1) = 0, and if x  X , we define f(x) = (x) for a concrete function    and   T. Then     

f  Hom((R,k), (R,k)) and if the function   is running over the set T and  is running over 

the set  ,   (0, 1), we obtain all functions f  Hom((R,k), (R,k)) – [9].   
 

Main results 

     Let us denote by A(k), A(k), A(k) cascades assigned by the above presented functorial 

construction to mono-unary algebras (R,k), (R,k), (R,k) in the given order. Considering the 

fact that card T = cc, where c = exp0, and that for any function h : R   R there holds 

k (h(0)) = h(0) + k   h(0) = h(k(0)), k  N,  

and similarly 

k (h(0)) = h(0) + k   h(0) = h(k(0)), k  N 

we obtain with respect to the above lemma and to the mentioned construction of sets of 
homomorphisms of mono-unary algebras in question the following assertion. 

Proposition: For any k  N we have 

card Hom (A(k), A(k))  = card Hom (A(k), A(k)) = 

      card Hom (A(k), A(k))  = card Hom (A(k), A(k)) = cc, 

                                           Hom (A(k), A(k)) = Hom (A(k), A(k)) =  .                                   

The asymmetry expressed in the Proposition can be deleted by the below described 
construction of extensions. 

Definition: Let A, B be different cascades such that there exists an injective homomorphism 

(i.e. an embedding) h: A B. Then the cascade B is said to be an extension of the cascade A.  

Theorem: Let us suppose k N. There exist extensions Ã )~( k , Â )ˆ( k  of the cascades A(k), 

A(k) such that 

A(k)    Ã )~( k    Â )ˆ( k .  

Proof: The extension of the cascade A(k) consists in an adding of two different critical 
points (called also equilibrium points) to its phase set R and also in the extension of the 

action    onto the new set of three critical points. 

     Let us denote R
~

= R  {, }, where ,  are elements which do not belong to the set 

R. In terms of operations on the class of ordered sets the chain ( R
~

,  ) can be expressed as 
the ordinal sum 

( R
~

,  ) = { }   (R,  )   { }. 

Since 




x)1k(lim)x(lim
x

k
x

  for any k  N 

and 




x)1k(lim)x(lim
x

k
x

  for any k  N 
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we define  )(~
k ,  )(~

k  and )x()x(~
kk    for each x  R. Now we have 

( R
~

, k
~ ) = ({}, id) + ({0}, id) +  (}, id) + 

 )1,0(

k, ),X(


   , 

Where – as above – ),X( k,     (Z , Z) for any (0, 1), thus ( R
~

, k
~ )  (R, ), k N. Then 

denoting  

Ã )~( k  = ( R
~

, Z,  ~
~

),  

where  ~
~

(x, m) = )x()~( m , x R
~

 and m Z, we have Ã )~( k  A(k) for any k N. Since  

for h(x) = x, x  R   

h( (x, m)) =   (x, m) = (h(x), m) =  ~
~

(h(x), m)  

for each pair [x, m]  R   Z, the cascade Ã )~( k  is an extension of the cascade A(k) (here 

the injection h: R R
~

 is the corresponding embedding of A(k) into Ã )~( k  for each k  N.   

Mono-unary algebras (R, k), k  N do not possess any critical point, hence we add three 

critical points, namely x1 = , x2 =   and x3 = C0,k , where C0,k  for a given k is the class of the 

decomposition Z modulo k which forms zero of the group Z  mod k, i.e.  

C0,k  = {… , 3k, 2k, k, 0, k, 2k, 3k, …, nk, …}.  

Similarly as above 




)x(lim k
x

 , 


)x(lim k
x

 , k  N 

and moreover 

)C( k,0k  C0,k + k = {z + k; z  C0,k } 

 for an arbitrary k  N. We define 

kR̂ = R  {, , C0,k }, i.e. ( kR̂ ,  ) = { C0,k } + ( R
~

,  ) 

and k̂ () =  , k̂ () =  , k̂ ( C0,k) = C0,k , k̂ (x) = )x(k  x + k for any x  R and k  N.  

Then evidently  

                                            (R, k)   ( R
~

, k
~ )   ( kR̂ , k̂ )                                                           (1) 

for any k  N. Defining functions 


 ˆ,k
ˆ : kR̂  Z  kR̂ by the formula 


 ˆ,k
ˆ (x, m) = ( k̂ )m (x) 

for any x  kR̂  and any m  Z, we obtain, similarly as above, that cascades Âk = ( kR̂ , Z,


 ˆ,k
ˆ ) 

are extensions of the cascades A(k) for any k  N. Consequently, with respect to (1) we 

have for each k  N  

                                                   A(k)    Ã )~( k    Â )ˆ( k .                                                               
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Concluding remarks 

Remark 1: From the just proved theorem there follows immediately that all functional 
equations 

f ( (x)) =  f(x), for ,   {k , k
~ , k̂  } 

have solution sets of the cardinality cc and moreover all of the mentioned functional 
equations have infinitely many bijective solutions.  

Remark 2: Treated structures are very special objects belonging to the theory of dynamical 
systems or to dynamical topology. Bibliography for these topics up to 1972 was compiled by 
Walter Helbig Gottschalk, Wesleyan University, Middletown, Connecticut. This Bibliography 
contains 178 pages and lists 2475 numbered items – cf. [7], p. 164 or [4], p. 301. Further, 
discrete dynamical systems with input discrete groups or semigroups constitute in fact a 
certain class of automata without outputs also called quasi-automata – [5, 8]. Literature 
devoted to these structures belonging into the algebraic theory of automata is very 
comprehensive. Let us notice in this connection that the actions of groups from the purely 
algebraic point of view are treated in chapter 5 of the monography [6] and in the paper [8].  

Remark 3: In the theory of dynamical systems, in particular in the theory of continuous flows 
– [2] there are investigated some concepts and properties of objects which can be 
transferred onto cascades. Chapter II, [2] of the monography [2] contains definitions of 
invariant, positively invariant and negatively invariant subsets of a phase set of a flow. The 
mentioned notions can be transferred onto cascades without any formal change. Also 
theorems 1. 3. through 1. 5., pp. 12-13 [2] are valid. In particular, theorem 1. 5. says that a 

set M   X (the phase set) is invariant (i. e.  (x, p)  M for all x M and all p  Z in our case) 

if and only if it is both positively invariant ( (x, p)  M for all x M and all p  Z+) and 

negatively invariant (similarly as above, but p  Z). Since a set M  R is invariant in a 

cascade A = (R, Z, ) if and only if M is the union of a system of orbits, it is clear that 

theorem 1. 5. [2] is also true in our case. Also the concept of a trajectory  (x) [2] (or a semi-
trajectory) in our case is a single orbit (or an iterated sequence – i. e. a splinter [10]) 

containing the number x R. Terms of the first positive prolongation and of the first 
prolongational limit set are near to our construction of extensions of cascades. Thus, all the 
mentioned concepts can be illustrated by our considered structures.   
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