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Abstract 

This article reports results from a research project carried out in upper secondary school in collaboration with 

eight Norwegian mathematics teachers.  The project concentrated on the development of students' inquiry, 

creativity and intellectual independence while they were working in a problem solving setting in mathematics 

classes. The teachers prepared and conducted teaching experiments for the inquiry of the students’ strategies. 

Two episodes of creativity will be presented and discussed in thearticle based on excerpts from the data. 

Works of Schoenfeld, Polya, Johan Lithner and A.A. diSessa form the theoretical basis for the project. 

Keywords: Investigation and problem solving, meta representational competence, mathematical creativity, 

mathematically founded reasoning. 

Classification: C30, D40, D50, D20 

Introduction 

This project, running with the aim to develop and study teaching that encourages students’ 
activity, inquiry and autonomy, is part of the EU project KeyCoMath 
(http://www.keycomath.eu/). It started in the spring 2013 where a collaborative research 
group was formed consisting of eight mathematics teachers from five local, upper secondary 
schools and one university researcher in mathematics education (Me, the author of this 
article). The group had articulated certain concerns like: i) Students are too dependent of 
check lists and working habits; they seldom are able to ’think outside the box’ ii) Even the 
brightest students can reproduce, but rarely produce mathematical thinking and iii) Many 
students do not want to solve new problems or to answer new questions.  

The group had the hypothesis, that appropriate problem-solving environments could 
support realization of many students’ hidden potentials for independent, mathematical 
thinking. This hypothesis was founded on the teachers‘ experiences and on reading in the 
research group of (Schoenfeld 2011) and others. The teachers already knew (Polya 1985) 
and wanted to use Polya’s scheeme for solving mathematical problems.  

We formulated the research question: “What strategies can we identify when the students 
work in an inquiry based learning environment in upper secondary mathematics?”  During 
the first year of the project, the teachers had designed and taught sequences in their own 
classes of about ten lessons each, where the students worked with problem solving. 
Gradually, our group’s research interest concentrated on students’ modes of reasoning and, 
in particular, on ideas about mathematical creativity presented by Lithner (2008). The 
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teachers deliberately designed sequences, which were meant to provoke examples of 
mathematical creativity. During the following years, we studied these teaching experiments 
and analyzed data with the aim to study episodes of mathematical creativity. We designed 
and taught new teaching experiments based on experiences from the first round. Analysis of 
these latest data is still going on. 

Glimpses of mathematical creativity 

One important result of the project was a didactic concept, which emerged during the 
teaching experiments: a particular aspect of the students’ work, which we interpreted as 
glimpses of mathematical creativity (GMC). In the following, I present two episodes of GMC, 
picked out from the project’s data. The GMCs occurred when pairs of students worked 
together in the experimental learning environment. Characteristic of the environment was 
the demand, that the students engaged in solving a mathematical problem which was 
completely new to them, and also that the teacher deliberately would avoid to interfere by, 
for example, asking the students sub questions or structuring their actual process of problem 
solving.  

Analysis and discussion of GMC as a didactic concept evolving from the episodes take place 
in the article’s final section, based on the research project’s theoretical framework. The main 
issues for discussion are: “Can we interpret GMC as one type of Creative Mathematically 
founded Reasoning (CMR) (Lithner 2008)?” and “What are the connections between GMC 
and Meta Representational Competence (MRC) (DiSessa 2002)?” 

Theoretical framework in brief 

Lithner: Types of reasoning for solving tasks 

According to (Lithner, 2008), solving a task can be seen as carrying out four steps:  

1) A (sub) task is met, which is denoted problematic situation if it is not obvious how 
to proceed.  

2) A strategy choice is made. It can be supported by predictive argumentation: Why 
will the strategy solve the task?  

3) The strategy is implemented, which can be supported by verificative 
argumentation: Why did the strategy solve the task?  

4)  A conclusion is obtained.  
Further, Lithner discerns between different types of reasoning involving strategy choice and 
strategy implementation. The two main types of reasoning are IR (Imitative Reasoning) and 
CMR (Creative Mathematically founded Reasoning). IR encompasses i) memorised reasoning 
where the strategy choice is founded on recalling a complete answer and the strategy 
implementation consists only of writing it down, and ii) three subtypes of algorithmic 
reasoning (AR) where the strategy choice is to recall a solution algorithm without creating a 
new solution; hereafter, the remaining parts of the strategy implementation are trivial.  

In contrast, CMR fulfils all of the following criteria (Lithner, 2008) p 266: 

1) Novelty. A new (to the reasoned) reasoning sequence is created, or a forgotten one 
is re-created.  

2) Plausibility. There are arguments supporting the strategy choice and/or strategy 
implementation motivating why the conclusions are true or plausible.  
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3) Mathematical foundation. The arguments are anchored in intrinsic mathematical 
properties of the components involved in the reasoning. 

Lithner did his studies at undergraduate level. Our group decided to take students’ CMR as a 
goal for the teaching experiment. Therefore, the data analysis concentrated on the 
identification of episodes of students’ creative mathematical thinking. 

diSessa: meta representational competence (MRC) 

Meta representational competence (MRC) refers to the full complex of abilities to deal with 
representational issues. It includes, centrally, the ability to design new representations, 
including both creating representations and judging their adequacy for particular purposes. 
But it also includes understanding how presentations work, how to work presentations for 
different purposes and, indeed, what the purposes of representations are. Knowledge that 
allows students to learn new representations quickly and the ability to explain 
representations and their properties is also included (diSessa 2002). Representational 
literacy is important for the students’ critical capabilities (meaning the capability of judging 
the effectiveness of the design’s result, and of redesigning it) in MRC, according to (diSessa 
2002). According to diSessa (2004), MRC may account for some parts of the competence to 
learn new concepts and to solve novel problems. Our group’s observations were in line with 
this and gave inspiration to new inquiries. Further, diSessa (2004) suggests that because 
insight and competence often involve coming up with an appropriate representation, 
learning may implicate developing one’s own personally effective representations for 
dealing with a conceptual domain.  

Although these two studies (diSessa 2002, 2004), in contrast with our project, aim at linking 
meta representational competence with design, and with students’ critical capabilities, we 
found the concept of meta representational competence potentially useful for analysis of 
the GMC’s occurring from our data. 

 

Two episodes of GMC 

The two episodes took place in different parts of the project. Nevertheless, they have 
something in common: After a period of work and unsuccessful trials, one of the students 
suddenly see a solution in a glimpse. He or she explains it to the other student(s) who 
immediately accept the solution. Subsequent data analysis does not reveal a clear 
connection between the solution and the two students’ proceeding ideas or suggestions. 
The solution may even diverge from the solution and the learning trajectory envisioned by 
the teacher when he or she designed the teaching experiment. 

Episode 1 

This episode is the English version of an episode that I have presented and discussed in 
(Andresen 2015a). The students in the classroom had been introduced to sequences and 
they had solved tasks from the textbook based on algebraic expressions and numerical 
examples. As the first part of the experimental teaching sequence, they had solved the task 
(Figure 1) on the blackboard (Nelsen 1993). The task was to find the connection between the 
figure and the algebraic expression, and thereby, to use the figure as an argument for the 
expression. In the episode’s task, the students were asked to solve a similar problem (Figure 
2) (Nelsen 1993) 
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Figure 1 

 
Figure 2 

The results of the two students‘  work are reconstructed here (Figure 3):  

First version First revised version Corrected version with help from E3 

S1=1 

S2=1+2 or 1+3? Writes:  

1+2=3 

S3=1+2+3=6 

S4=1+2+3+4=10 

S5=1+2+3+4+5=15 

S6=1+2+3+4+5+6=21 

S7=1+2+3+4+5+6+7=28 

S8=1+2+3+4+5+6+7+8=36 

 

S2=2+1 

S3=3+ 3,  

S4=4+6 

S5=5+10 

S6=6+15 

S7=7+21 

S8=8+28 

S1=1 

S2=1+3=4 

S3=1+3+5=9 

S4=1+3+5+7=16 

S5=1+3+5+7+9=25 

S6=1+3+5+7+9+11=36 

S7=1+3+5+7+9+11+13=4 

S8=1+3+5+7+9+11+13+15=64 

Figure 3 

Figure 4 entails the transcription of the episode (my translation) in the left column and my 
reflections and explanations in the right column: 

Episode 1 (Tanks 02.09.2013 video5) 

E1: (writing,) S1=1, S2=1+2 or 1+3? 

E2: 1+3  

but E1 insists on writing 1+2, 

The dialog between E1 and E2 shows how they take the 

preceeding task as their starting point (Figure 1) and try to 

copy the strategy from that one. They continue (My 

reconstruction Figure 3, 1. column).  

E2 suggests that they write 1+3, but he is overruled by E1 

without any arguments 

E2: (points) then we must find out if this, 

plus something, equals that (the sum) (..) 

They agree about the expression S2=2+1, 

and use the corresponding expressions up 

to S8.  

 

The students do not discern clearly between an and Sn , and 

see no clear connection to the ’rows’ and the ’area’, 

respectively, on the figure. Consequently, they cannot 

establish a pattern but merely write the expressions from 

the preceeding task ai equals the number of elements in 

diagonal number i.  

This strategy is similar to Lithner’s AR.  

They try to find a recursive expression 

(...) 

E1: (writing) an=an-1+2 

E2: Is it true? This is Sn  

E1: S2 (points to what she has written) 

Hereafter, when they continue looking for a pattern in the 

expressions for S1, S2, ..., they create a way to split the 

numbers in two terms, which are dependent of i (2. 

column Figure 3). 
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equals 2-1+2, equals 3  

(writes) Sn=S2-1+2=3 

E2: But S3-1 , then?  

E1: And now Sp=Sp-1+2 – oups! 

Something is wrong here! We have found 

something totally different..  

 

This splitting appears to be of no help since it does not 

link to the ‘area’ of the figure. They agree about giving it 

up  

E2: It is just plus in stead of minus, p+1, 

+1+2, equals 6  

Ida: Oh yes! 

 

This looks like guessing and they do not use it 

E3 (sitting in front of the two, at the next 

table) turns around to help them 

E3: But this is not correct?  

E1: Yes,  

E3: How could it be correct? S7 equals 

28?  

E1: Yes, we added all of them, the result  

E3: But take a look here (points to the 

figure) you must add 1 + 3 + ... 

E1: Oh yes, we did only add 1+2+3 

(points to the columns) 

E3: It is boring to write all this (points to 

the sums), just write S1  

E1: 4,  

E3: no, this is S1  

With help from another student (E3)  Sn is now linked 

with the ’area’ of square number n.  

E3 refers to the results in 1. column Figure 3. when she 

says that it is not correct.  

E1 defends their result by claiming that they have added 

all the numbers and got a result(!), but she is easily 

convinced when E3 points to the figure and claims that 

they added the wrong numbers  

E3 tries to convince them about the shorter, generalized 

term Si by saying that it is boring to write many numbers, 

maybe she repeat what the teachers used to say 

E1: (writing) S1=1, S2=4, 

S3=(counting)5,6,7,8,9, (writes) 9, 

S4=(counting) 10,11,12,13,etc. 

E1 continues the counting, writes 

correctly up to S8.. 

 

E1 finds the values of Si (3. column Figure 3) by counting 

the bullets on the figure. 

Now they have to see a pattern and again, 

the try sums 

E1: And now we must multiply – no add..   

E2: S2, then we must take for example 2.. 

E1: Plus 2 (writes) 2+2 

 

Apparently, E2 and E1 choose randomly between addition 

and multiplication when they continue with Sn. At least, 

they give no arguments 

E2: 2 times 4 is not of any help..  

E1: no,  

E2: So we start with 2+2. S1=1, 

S2=4=2+2, 

E2 suggests 2 times 2 +1 but they agree 

about adding: S3=3+6 

 

E2 mentions that one of the values of a Sn might appear as 

2 times 4 but immediately rejects the idea 

E3 (points to the numbers) 

E1: oh – square numbers? 

E3: Yes,(writes) Sn=n2, we have already 

figured it out 

They choose the same pattern as before but E3 stops 

them. E3 points to the new values and in that way, she 

makes E1 og E2 aware of the square numbers. Here E1 

and E2 experience the GMC. 

Figure 4 

Episode 2 
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This episode was presented and discussed in (Andresen 2015b). It took place in a highest-
level mathematics classroom with about 22 students. The teacher gave an introduction of 
Polygonal numbers, based on his oral explanation of how the next polygonal number 
emerged from the previous by expanding the polygon, and based on his drawings on the 
blackboard (Figure 5). 

 
Figure 5 

The students’ task was to complete a form, distributed by the teacher, with the polygonal 
numbers and to express the general terms (Figure 6). After the introduction, the students 
started to work in pairs. The subject polygonal numbers was new to the students and they 
had no prior experiences (from the classroom, according to the teacher) with this kind of 
tasks. 
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Figure 6 

There was no restrictions on what methods they might to use, but the teacher gave no hints 
or sub questions, neither. One strategy for completing the form would be to study the 
pattern of increase, as shown in Figure 7. 

 
Figure 7 

Most of the students combined drawings with counting and, simultaneously, looked for 
patterns in the rows and/or columns containing the numbers obtained from the drawings.  

Figure 8 entails the transcription of the episode (my translation) in the left column and my 
reflections and explanations in the right column:  

 Episode 2 (Danielsen 18.03.2014 video8)  

1  The two students B1 and B2 sit and 

work together. They have already 

managed to write the first five 

triangular numbers 1, 3, 6, 10 and 15 

and the square numbers 1, 4, 9, 16, 25, 

36, 72  82 and 92  (Area A Pictures a 

and b) based on their drawings (Area B 

Picture a).  

Apparently, their unarticulated plan 

was to find a pattern for the extension 

from triangular numbers to square 

numbers, which they could extend to 

create the pentagular numbers and, 

afterwards, the succeeding polygonal 

numbers. 

B1:..Then the next one is seven 

squared, (writes 72),the next one is 

eight squared (writes 82), the next is 

nine squared (writes 92 in Area A 

Pictures a and b),  

 

Picture a 

 

General

Triangular Numbers ½ · n(n+1)

Increased by

Square numbers n²

Increased by

Pentagonal numbers 3/2 n² - ½n

Increased by

Hexagonal numbers 2n² - n

Increased by

k-polygonal numbers ½ k (n² - n) - n² + 2n

Increased by

3 6 10

36

15

n=6

21

2 3 4 5 6 n

n=1 n=2 n=3 n=4 n=5

1

35

1 4 9 16 25

2 · 2 - 1 2 · 3 - 1 2 · 4 - 1 2 · 5 - 1 2 · 6 - 1

45

51

66

3 · 2 - 2 3 · 3 - 2 3 · 4 - 2 3 · 5 - 2 3 · 6 - 2

1

5

6

12

15

22

28

1

1 k 3(k - 2) - (k - 3) + k … …

4 · 2 - 3 4 · 3 - 3 4 · 4 - 3 4 · 5 - 3 4 · 6 - 3

3(k - 2) - (k - 3) 4(k - 2) - (k - 3) 5(k - 2) - (k - 3) 6(k - 2) - (k - 3)

2 · n - 1

3 · n - 2

4 · n - 3

n(k - 2) - (k - 3)

…
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Picture b 

2 B1: then we know the difference 

between these (points to the square 

numbers, points to the numbers 3, 5, 7, 

9, 11 in area A Pictures a and b) 

Their preliminary choice of a strategy was, 

apparently, to read a pattern from the 

increase of the square numbers. The 

teacher’s introduction had lead them in this 

direction (without giving any details, though)  

3 B1: .. so in fact you have (writes 12, 22, 

32, 42, 52, 62, 72, 82, 92, last line in area 

A, Pictures a and b) 

B1 rewrites the square numbers in powers of 

two, apparently for making it easier to read a 

pattern 

4 B2: But we cannot.. 

B1: How can we write a formula for 

this? 

B2: For the triangle, it is not squared 

at least 

B1: But the triangle is different (..) 

It becomes clear to B1 and B2 that the 

pattern they look for cannot be as simple as 

an increase in powers 

5 B1: The triangle, it is something with 

its three sides, with the triangle in the 

middle somehow.. (points to area C, 

Picture a) 

B1: (draws a triangle, covered by his 

hand on Picture a) 

30 seconds silence 

B1 and B2 are both starring at their drawings. 

According to my interpretation, they 

reconsider the strategy and try to take 

inspiration for a new strategy 

6 B1:(..) one more. What is the formula 

for the square? 

B2: Yes I see that, the square is okay. 

But.. 

This sounds as if B1 still considers the old 

strategy of extension, and maybe he wants to 

check it out again. B2 is finished with the 

squares and he does not reconsider the same 

extension idea 

7 B2: But then, the triangle, you can 

somehow.. (points to the polygon in 

area D on his drawing Picture c) 

 

Picture c 

8 B2: For example, for the pentagonal, 

then you may in a way, you can take a 

formula for the triangle and a formula 

B2 takes inspiration from his drawing to 

express the pentagonal numbers by a 

formula, which he can create by adding the 
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for the square and add them formulas they already know.  

9 B1: Then you can use it for all 

B2: Yes you can do it with all of them 

B1: Yes, exactly. So This is the square 

(points to the squares in area B in 

Picture a), that is why it becomes like 

this .. 

 

B1 acknowledges that the principle is 

applicable for all the pentagonal numbers and 

B2 agrees.   

B1 recognises the squares as parts of the 

pentagonal numbers in the first few cases in 

his own drawings 

10 B1: For example these points here, 

they have two in common.. 

B2: Yes yes.. 

They start to figure the formula out as a sum 

when taking into account that the triangle and 

the square has one line in common, 

according to the drawing 

Figure 8 

Discussion and Conclusion 

The discussion in (Andresen 2015a) of episode 1 concludes that the episode contains an 
example of the algorithmic reasoning (AR) described by Lithner (2008), first Column Figure 3, 
where the students copy the solution of the preceeding task. It also contains examples of 
initial creative thinking in the second and third column, Figure 3. All the episode’s examples 
of creative thinking concern elementary reasoning rather than problem solving but they took 
place in a problem solving setting.  

In parallel, the discussion in (Andresen 2015b) of episode 2 compares the episode with 
Lithner’s criteria for CMR (Lithner 2008): The four criteria for CMR were fulfilled in the case, 
only if shifts between different representations can be seen as part of the ‘mathematical 
foundation’ in the third one. The GMC in episode 2 was founded on the students’ 
competence in shifting between the different representations (numbers, formulas and 
drawings) of the polygonal numbers. Their arguments for supporting the strategy choice 
were anchored in both students’ representational literacy, which is an aspect of meta 
representational competence (MRC) as it was described above. 

One of the students’ representational literacy was revealed in the episode’s scheme row 8, 
where B2 talked about the formula for the triangle and for the square, and about adding 
these two, without even to discern between the different representations. The other 
student immediately understood the idea. Episode 2 illustrates how the experimental lesson 
on polygonal numbers, founded on interplay between different representations, could be 
supportive of the students’ development of meta representational competence as well as 
their creative, mathematically founded reasoning.  

The student’s creative reasoning in both episodes happened in a glimpse. In episode 1, it 
happened when the students E1 and E2 realised that they had squares and square numbers. 
In episode 2, it happened when the student B2 caught the connection between the 
pentagon consisting of a triangle (with a corresponding formula) and a square (with a 
corresponding formula) on the one hand, and, on the other hand, the algebraic number of 
which he wanted to have a formula.  
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Hence, in both episodes the GMC happened in the moment, when the student managed to 
see the two as different representations of the same object. A number of episodes from our 
data contains examples of GMC, which happen in a similar way when a student manage to 
establish a link between two different representations of the same object. Further analysis 
of data from our group’s experiments may provide interesting insight into the connections 
and relations between CMR, GMC and MRC. 
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